Skip to main content
Log in

Peri-Therapeutic Quantitative Flow Analysis of Endovascular Revascularization for Ischemic Stroke Patients on Digital Subtraction Angiography

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Digital subtraction angiography (DSA) and optical flow method (OFM) were integrated to quantitate cerebral blood flow in patients with ischemic stroke and the results were utilized to predict the outcome of treatment. A total of 34 patients with ischemic stroke who received endovascular therapy were included in this study. The post-treatment blood flow velocity was significantly higher (P < .001) than the pre-treatment velocity. Anterior–posterior blood flow gain was correlated with National Institute of Health Stroke Scale (NIHSS) score improvement and 90-day mRS. Patients with a higher blood flow gain (> median value of 33.36%) were more likely to have a higher MBD NIHSS improve score (> 4) than those with a lower blood flow gain (< median value). Quantitative digital subtraction angiography provides hemodynamic information for patients treated with endovascular revascularization, and offers a reliable follow-up evaluation for the ischemic stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saver, J. L., Jahan, R., Levy, E. I., Jovin, T. G., Baxter, B., Nogueira, R. G., et al. (2012). Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet, 380(9849), 1241–1249.

    Article  Google Scholar 

  2. Nogueira, R. G., Lutsep, H. L., Gupta, R., Jovin, T. G., Albers, G. W., Walker, G. A., et al. (2012). Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet, 380(9849), 1231–1240.

    Article  Google Scholar 

  3. Turk, A. S., Frei, D., Fiorella, D., Mocco, J., Baxter, B., Siddiqui, A., et al. (2014). ADAPT FAST study: a direct aspiration first pass technique for acute stroke thrombectomy. J NeuroInterventional Surg, 6(4), 260–264.

    Article  Google Scholar 

  4. Khatri, P., Abruzzo, T., Yeatts, S. D., Nichols, C., Broderick, J. P., Tomsick, T. A., et al. (2009). Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology, 73(13), 1066–1072.

    Article  Google Scholar 

  5. Zaidat, O. O., Suarez, J. I., Sunshine, J. L., Tarr, R. W., Alexander, M. J., Smith, T. P., et al. (2005). Thrombolytic therapy of acute ischemic stroke: correlation of angiographic recanalization with clinical outcome. Am J Neuroradiol, 26(4), 880–884.

    Google Scholar 

  6. Rha, J. H., & Saver, J. L. (2007). The impact of recanalization on ischemic stroke outcome a meta-analysis. Stroke, 38(3), 967–973.

    Article  Google Scholar 

  7. Fargen, K. M., Meyers, P. M., Khatri, P., & Mocco, J. (2013). Improvements in recanalization with modern stroke therapy: a review of prospective ischemic stroke trials during the last two decades. J NeuroInterventional Surg, 5(6), 506–511.

    Article  Google Scholar 

  8. Costalat, V., Machi, P., Lobotesis, K., Maldonado, I., Vendrell, J. F., Riquelme, C., et al. (2011). Rescue, combined, and stand-alone thrombectomy in the management of large vessel occlusion stroke using the solitaire device: a prospective 50-patient single-center study timing, safety, and efficacy. Stroke, 42(7), 1929–1935.

    Article  Google Scholar 

  9. Zaidat, O. O., Yoo, A. J., Khatri, P., Tomsick, T. A., von Kummer, R., Saver, J. L., et al. (2013). Recommendations on angiographic revascularization grading standards for acute ischemic stroke a consensus statement. Stroke, 44(9), 2650–2663.

    Article  Google Scholar 

  10. Jones, H. R., Millikan, C. H., & Sandok, B. A. (1980). Temporal profile (clinical course) of acute vertebrobasilar system cerebral infarction. Stroke, 11(2), 173–177.

    Article  Google Scholar 

  11. Abilleira, S., Cardona, P., Ribó, M., Millán, M., Obach, V., Roquer, J., et al. (2014). Outcomes of a contemporary cohort of 536 consecutive patients with acute ischemic stroke treated with endovascular therapy. Stroke, 45(4), 1046–1052.

    Article  Google Scholar 

  12. Bonnefous, O., Pereira, V. M., Ouared, R., Brina, O., Aerts, H., Hermans, R., et al. (2012). Quantification of arterial flow using digital subtraction angiography. Med Phys, 39(10), 6264–6275.

    Article  Google Scholar 

  13. Shpilfoygel, S. D., Close, R. A., Valentino, D. J., & Duckwiler, G. R. (2000). X-ray videodensitometric methods for blood flow and velocity measurement: A critical review of literature. Med Phys, 27(9), 2008–2023.

    Article  Google Scholar 

  14. Scalzo, F., & Liebeskind, D. S. (2016). Perfusion angiography in acute ischemic stroke. Comput Math Methods Med. doi:10.1155/2016/2478324.

    MathSciNet  MATH  Google Scholar 

  15. Huang, T. C., Wu, T. H., Lin, C. J., Mok, G. S., & Guo, W. Y. (2012). Peritherapeutic quantitative flow analysis of arteriovenous malformation on digital subtraction angiography. J Vasc Surg, 56(3), 812–815.

    Article  Google Scholar 

  16. Wu, T. H., Lin, C. J., Lin, Y. H., Guo, W. Y., & Huang, T. C. (2013). Quantitative analysis of digital subtraction angiography using optical flow method on occlusive cerebrovascular disease. Comput Methods Programs Biomed, 111(3), 693–700.

    Article  Google Scholar 

  17. Huang, T. C., Wu, T. H., Lin, Y. H., Guo, W. Y., Huang, W. C., & Lin, C. J. (2013). Quantitative flow measurement by digital subtraction angiography in cerebral carotid stenosis using optical flow method. J X-Ray Sci Technol, 21(2), 227–235.

    Google Scholar 

  18. Treger, I., Aidinof, L., Lutsky, L., & Kalichman, L. (2010). Mean flow velocity in the middle cerebral artery is associated with rehabilitation success in ischemic stroke patients. Arch Phys Med Rehabil, 91, 1737–1740.

    Article  Google Scholar 

  19. Treger, I., Streifler, J. Y., & Ring, H. (2005). The relationship between mean flow velocity and functional and neurologic parameters of ischemic stroke patients undergoing rehabilitation. Arch Phys Med Rehabil, 86, 427–430.

    Article  Google Scholar 

  20. Zanette, E. M., Roberti, C., Mancini, G., Pozzilli, C., Bragoni, M., & Toni, D. (1995). Spontaneous middle cerebral artery reperfusion in ischemic stroke. A follow-up study with transcranial Doppler. Stroke, 26(3), 430–433.

    Article  Google Scholar 

  21. Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artif Intell, 17(1–3), 185–203.

    Article  Google Scholar 

  22. Huang, T. C., Lin, W. C., Wu, C. C., Zhang, G., & Lin, K. P. (2010). Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods. Microvasc Res, 80(3), 477–483.

    Article  Google Scholar 

  23. Shih, T. C., Zhang, G., Wu, C. C., Hsiao, H. D., Wu, T. H., Lin, K. P., et al. (2011). Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation. Microvasc Res, 81(1), 68–72.

    Article  Google Scholar 

  24. Ho, Y. J., Chang, M. B., Lin, Y. H., Yao, C. H., & Huang, T. C. (2012). Quantitative portal vein velocity of liver cancer patients with transcatheter arterial chemoembolization on angiography. Sci World J, 2012, 830531.

    Google Scholar 

  25. Huang, T. C., Chang, C. K., Liao, C. H., & Ho, Y. J. (2013). Quantification of blood flow in internal cerebral artery by optical flow method on digital subtraction angiography in comparison with time-of-flight magnetic resonance angiography. PLoS ONE, 8(1), e54678.

    Article  Google Scholar 

  26. Goyal, M., Fargen, K. M., Turk, A. S., Mocco, J., Liebeskind, D. S., Frei, D., et al. (2014). 2C or not 2C: defining an improved revascularization grading scale and the need for standardization of angiography outcomes in stroke trials. J NeuroInterventional Surg, 6(2), 83–86.

    Article  Google Scholar 

  27. Kallmes, D. (2012). TICI: if you are not confused, then you are not paying attention. Am J Neuroradiol, 33(5), 975–976.

    Article  Google Scholar 

  28. Banks, J. L., & Marotta, C. A. (2007). Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials a literature review and synthesis. Stroke, 38(3), 1091–1096.

    Article  Google Scholar 

  29. Demchuk, A. M., Burgin, W. S., Christou, I., Felberg, R. A., Barber, P. A., Hill, M. D., et al. (2001). Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke, 32(1), 89–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung-Chi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SN., Lin, YY., Ho, TJ. et al. Peri-Therapeutic Quantitative Flow Analysis of Endovascular Revascularization for Ischemic Stroke Patients on Digital Subtraction Angiography. J. Med. Biol. Eng. 38, 387–395 (2018). https://doi.org/10.1007/s40846-017-0322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0322-5

Keywords

Navigation