Edge Weighted Local Texture Features for the Categorization of Mammographic Masses

  • Abhishek Midya
  • Rinku Rabidas
  • Anup Sadhu
  • Jayasree ChakrabortyEmail author
Original Article


In this paper, two novel features—discriminative robust local binary pattern (DRLBP) and discriminative robust local ternary pattern (DRLTP), extensions of local binary and local ternary pattern (LBP and LTP), respectively, are introduced for the characterization of mammographic masses as benign or malignant. Unlike LBP and LTP, DRLBP and DRLTP conserve the edge information along with the texture which delivers more discriminating potential when tested on two benchmark databases, namely, the mini-MIAS and DDSM. To evaluate the efficacy of the proposed features, four distinct classifiers: fisher linear discriminant analysis, artificial neural network, random forest, and support vector machine have been employed with 10-fold cross-validation after selecting the optimal subset of attributes using stepwise logistic regression. The best area under the receiver operating characteristic curve of 0.98 with an accuracy of 92.10% has been achieved with the mini-MIAS database while the same for the DDSM database is 0.97 with accuracy 90.94%.


Breast cancer Mammography Mass classification Discriminative Robust local binary pattern Discriminative robust local ternary pattern 



We thank John M. Creasy, MD for providing comments that greatly improved the manuscript.


  1. 1.
    Oliver, A., Freixenet, J., Mart, J., Prez, E., Pont, J., Denton, E. R., et al. (2010). A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis, 14(2), 87–110.CrossRefGoogle Scholar
  2. 2.
    American Cancer Society (ACS): Global Cancer Facts and Figures. (3rd Edition 2012) Accessed 15 June 2015.
  3. 3.
    Calas, M. J. G., Gutfilen, B., & de Albuquerque Pereira, W. C. (2012). CAD and mamography: why use this tool? Radiologia Brasileira, 45, 46–52.CrossRefGoogle Scholar
  4. 4.
    Chakraborty, J., Mukhopadhyay, S., Singla, V., Khandelwal, N., & Rangayyan, R. M. (2012). Detection of masses in mammograms using region growing controlled by multilevel thresholding. In 25th IEEE international symposium on computer-based medical systems (CBMS) (pp 1–6).Google Scholar
  5. 5.
    Homer, M. J. (1991). Mammographic interpretation: a practical approach (2nd ed.). New York: McGraw-Hill.Google Scholar
  6. 6.
    Liu, X., Liu, J., Zhou, D., & Tang, J. (2010). A benign and malignant mass classification algorithm based on an improved level set segmentation and texture feature analysis. In 4th IEEE international conference on bioinformatics and biomedical engineering (iCBBE) (pp. 1–4).Google Scholar
  7. 7.
    Tai, S. C., Chen, Z. S., & Tsai, W. T. (2014). An automatic mass detection system in mammograms based on complex texture features. IEEE Journal of Biomedical and Health Informatics, 18(2), 618–627.CrossRefGoogle Scholar
  8. 8.
    Chakraborty, J., Midya, A., Mukhopadhyay, S., & Sadhu, A. (2013). Automatic characterization of masses in mammograms. In 6th IEEE international conference on biomedical engineering and informatics (BMEI) (pp. 111–115).Google Scholar
  9. 9.
    Midya, A., & Chakraborty, J. (2015). Classification of benign and malignant masses in mammograms using multi-resolution analysis of oriented patterns. In 12th IEEE international symposium on biomedical imaging (ISBI) (pp. 411–414).Google Scholar
  10. 10.
    Eltoukhy, M. M., Faye, I., & Samir, B. B. (2012). A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Computers in Biology and Medicine, 42(1), 123–128.CrossRefGoogle Scholar
  11. 11.
    Görgel, P., Sertbas, A., & Ucan, O. N. (2013). Mammographical mass detection and classification using local seed region growing-spherical wavelet transform (LSRG-SWT) hybrid scheme. Computers in Biology and Medicine , 43(6), 765–774.CrossRefGoogle Scholar
  12. 12.
    Nanni, L., Lumini, A., & Brahnam, S. (2012). Survey on LBP based texture descriptors for image classification. Expert Syst Appl, 39(3), 3634–3641.CrossRefGoogle Scholar
  13. 13.
    Muramatsu, C., Hara, T., Endo, T., & Fujita, H. (2016). Breast mass classification on mammograms using radial local ternary patterns. Computers in Biology and Medicine, 72(15), 43–53.CrossRefGoogle Scholar
  14. 14.
    Sahiner, B., Chan, H. P., Petrick, N., Helvie, M. A., & Hadjiiski, L. M. (2001). Improvement of mammographic mass characterization using spiculation measures and morphological features. Medical Physics, 28(7), 1455–1465.CrossRefGoogle Scholar
  15. 15.
    Tan, M., Pu, J., & Zheng, B. (2014). Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. Int J Comput Assist Radiol Surg, 9(6), 1005–1020.CrossRefGoogle Scholar
  16. 16.
    Rabidas, R., Midya, A., Sadhu, A., & Chakraborty, J. (2016). Benign-malignant mass classification in mammogram using edge weighted local texture features. In SPIE medical imaging-2016: computer aided diagnosis (Vol. 9785, pp. 97851X–97851X–6).Google Scholar
  17. 17.
    Sahiner, B. S., Chan, H. P., Petrick, N., Helvie, M. A., & Goodsitt, M. M. (1998). Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Med Phys, 24(4), 516–526.CrossRefGoogle Scholar
  18. 18.
    Vadivel, A., & Surendiran, B. (2013). A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput Biol Med, 43(4), 259–267.CrossRefGoogle Scholar
  19. 19.
    Sérifović Trbalić, A., Trbalić, A., Demirović, D., Prljača, N., & Cattin, P. C. (2013) Classification of benign and malignant masses in breast mammograms. In 37th IEEE international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 228–233).Google Scholar
  20. 20.
    Bojar, K., & Nieniewski, M. (2008). New features for classification of cancerous masses in mammograms based on morphological dilation. In 5th IEEE international conference on visual information engineering (VIE) (pp. 111–116).Google Scholar
  21. 21.
    Sun L, Li L, Xu W, Liu W, Zhang J, Shao G (2015) A novel classification scheme for breast masses based on multi-view information fusion. In 4th IEEE international conference on bioinformatics and biomedical engineering (iCBBE) (pp. 1–4).Google Scholar
  22. 22.
    Wei, C. H., Chen, S. Y., & Liu, X. (2012). Mammogram retrieval on similar mass lesions. Computer Methods and Programs in Biomedicine, 106(3), 234–248.CrossRefGoogle Scholar
  23. 23.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. In IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.Google Scholar
  24. 24.
    Mohanty, A. K., Senapati, M. R., Beberta, S., & Lenka, S. K. (2013). Texture-based features for classification of mammograms using decision tree. Neural Computing & Applications 23(3), 1011–1017.CrossRefGoogle Scholar
  25. 25.
    Khan, S., Hussain, M., Aboalsamh, H., Mathkour, H., Bebis, G., & Zakariah, M. (2016). Optimized gabor features for mass classification in mammography. Applied Soft Computing, 44, 267–280.CrossRefGoogle Scholar
  26. 26.
    Chakraborty, J., Rangayyan, R. M., Banik, S., Mukhopadhyay, S., & Desautels, J. L. (2012). Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer. Journal of Electronic Imaging, 21.Google Scholar
  27. 27.
    Laroussi, M., Ben Ayed, N., Masmoudi, A., & Masmoudi, D. (2013). Diagnosis of masses in mammographic images based on zernike moments and local binary attributes. World congress on computer and information technology (WCCIT) (pp. 1–6).Google Scholar
  28. 28.
    Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.CrossRefzbMATHGoogle Scholar
  29. 29.
    Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Suckling, J. (1994). The mammographic image analysis society digital mammogram database exerpta medica. International Congress Series, 1069, 375–378.Google Scholar
  31. 31.
    Bowyer K, Moore R, Kopans D, Heath M, Kegelmeyer WP (2001) Digital database for screening mammography. In Proceedings of 5th international workshop on digital mammography, Medical Physics Publishing.Google Scholar
  32. 32.
    Satpathy, A., Jiang, X., & Eng, H. L. (2014). LBP-based edge-texture features for object recognition. IEEE Transactions on Image Processing, 23(5), 1953–1964.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ramsey, F. L., & Schafer, D. W. (1997). The statistical sleuth: a course in methods of data analysis. Belmont: Duxbury Press.zbMATHGoogle Scholar
  34. 34.
    Haykins, S. (1999). Neural networks: a comprehensive foundation (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  35. 35.
    Duda, R., Hart, P., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley-Interscience.zbMATHGoogle Scholar
  36. 36.
    Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer.CrossRefzbMATHGoogle Scholar
  37. 37.
    Breiman, L. (2005). Random forests. Machine Learning, 45(1), 5–32.CrossRefzbMATHGoogle Scholar
  38. 38.
    Vapnik, V. (2000). The nature of statistical learning theory, statistics for engineering and information science. New York: Springer.CrossRefzbMATHGoogle Scholar
  39. 39.
    Casti, P., Mencattini, A., Salmeri, M., Ancona, A., Mangeri, F., Pepe, M., et al. (2016). Contour-independent detection and classification of mammographic lesions. Biomed Signal Process Control, 25, 165–177.CrossRefGoogle Scholar
  40. 40.
    Tahmasbi, A., Saki, F., & Shokouhi, S. B. (2011). Classification of benign and malignant masses based on Zernike moments. Computers in Biology and Medicine, 41(8), 726–735.CrossRefGoogle Scholar
  41. 41.
    Mudigonda, N. R., Rangayyan, R., & Desautels, J. E. L. (2000). Gradient and texture analysis for the classification of mammographic masses. IEEE Transactions on Medical Imaging, 19(10), 1032–1043.CrossRefGoogle Scholar
  42. 42.
    Buciu, I., & Gacsadi, A. (2011). Directional features for automatic tumor classification of mammogram images. Biomedical Signal Processing and Control, 6(4), 370–378.CrossRefGoogle Scholar
  43. 43.
    Pomponiu, V., Hariharan, H., Zheng, B., & Gur, D. (2014). Improving breast mass detection using histogram of oriented gradients. In SPIE medical imaging-2014: computer aided diagnosis (Vol. 9035, pp. 90351R–90351R).Google Scholar
  44. 44.
    Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). Cloudid: trustworthy cloud-based and cross-enterprise biometric identification. Expert Systems With Applications, 42(21), 7905–7916.CrossRefGoogle Scholar
  45. 45.
    Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893).Google Scholar
  46. 46.
    do Nascimento, M. Z., Martins, A. S., Neves, L. A., Ramos, R. P., Flores, E. L., & Carrijo, G. A. (2013). Classification of masses in mammographic image using wavelet domain features and polynomial classifier. Expert Systems With Applications, 40(15), 6213–6221.CrossRefGoogle Scholar
  47. 47.
    Rabidas, R., Chakraborty, J., & Midya, A. (2017). Analysis of 2D singularities for mammographic mass classification. IET Computer Vision, 11(1), 22–32.CrossRefGoogle Scholar
  48. 48.
    John, A., Gonzleza, F. A., Ramos-Pollnb, R., Oliveirac, J. L., & Lopez, M. A. G. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 21(127), 248–257.Google Scholar
  49. 49.
    Qiu, Y., Yan, S., Tan, M., Cheng, S., Liu, H., & Zheng, B. (2016). Computer-aided classification of mammographic masses using the deep learning technology: a preliminary study. In SPIE medical imaging-2016: computer-aided diagnosis (Vol. 9785, 978520–978520–6).Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Electronics and Instrumentation Engg.National Institute of Technology SilcharSilcharIndia
  2. 2.Department of Electronics and Communication Engg.National Institute of Technology SilcharSilcharIndia
  3. 3.EKO CT&MRI Scan CentreMedical College KolkataKolkataIndia
  4. 4.Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations