Reliability and Validity of Attitude and Heading Reference System Motion Estimation in a Novel Mirror Therapy System

  • Wonshik Kim
  • Jaewon Beom
  • Chulwoo Park
  • Sukgyu Koh
  • Yoon Jae Kim
  • Youdan Kim
  • Sun Gun Chung
  • Sungwan KimEmail author
Original Article


In this study, we conducted an experiment for validating a motion estimation system used in novel mirror therapy. The proposed motion estimation system consists of two parts. The first part is motion estimation using attitude and heading reference system sensors. The system attaches a reference frame to a patient to provide flexibility to the patient’s movements. The second part is a compensation algorithm that uses principal component analysis (PCA). Ten subjects performed simple reaching tasks for the validation experiment. The results showed success rate of 89.67% under normal conditions. The PCA-based compensation algorithm increases the success rate from 89.67 to 92.89%. Accurate capturing of healthy arm motion will make effective robot-aided mirror therapy systems feasible.


Attitude and heading reference system Inertia measurement unit Motion estimation Robot-aided mirror therapy Principal component analysis Robotic rehabilitation 



This work was funded by the 2012 Seoul National University Brain Fusion Program (Grant Number: 800-20120444) and BK21 Plus Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant Number: 22A20130011025).


  1. 1.
    Sarakoglou, I., Caldwell, D. G., Tsagarakis, N. G., & Kousidou, S. (2007). Exoskeleton-based exercisers for the disabilities of the upper arm and hand. INTECH Open Access Publisher.Google Scholar
  2. 2.
    Niu, X., Varoqui, D., Kindig, M., & Mirbagheri, M. M. (2014). Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis. Journal of Neuroengineering and Rehabilitation, 11(1), 1.CrossRefGoogle Scholar
  3. 3.
    Krebs, H. I., Hogan, N., Aisen, M. L., & Volpe, B. T. (1998). Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 6(1), 75–87.CrossRefGoogle Scholar
  4. 4.
    Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J., & Koetsier, J. C. (1997). Effects of intensity of rehabilitation after stroke a research synthesis. Stroke, 28(8), 1550–1556.CrossRefGoogle Scholar
  5. 5.
    Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127–142.CrossRefGoogle Scholar
  6. 6.
    Hamzei, F., Läppchen, C. H., Glauche, V., Mader, I., Rijntjes, M., & Weiller, C. (2012). Functional plasticity induced by mirror training the mirror as the element connecting both hands to one hemisphere. Neurorehabilitation and Neural Repair, 26(5), 484–496.CrossRefGoogle Scholar
  7. 7.
    Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., & Dohle, C. (2013). Mirror therapy for improving motor function after stroke. Stroke, 44(1), e1–e2.CrossRefGoogle Scholar
  8. 8.
    Dohle, C., Püllen, J., Nakaten, A., Küst, J., Rietz, C., & Karbe, H. (2009). Mirror therapy promotes recovery from severe hemiparesis: A randomized controlled trial. Neurorehabilitation and Neural Repair, 23(3), 209–217.CrossRefGoogle Scholar
  9. 9.
    Semrau, J. A., Herter, T. M., Scott, S. H., & Dukelow, S. P. (2013). Robotic identification of kinesthetic deficits after stroke. Stroke, 44(12), 3414–3421.CrossRefGoogle Scholar
  10. 10.
    Smorenburg, A. R., Ledebt, A., Deconinck, F. J., & Savelsbergh, G. J. (2013). Practicing a matching movement with a mirror in individuals with spastic hemiplegia. Research in Developmental Disabilities, 34(9), 2507–2513.CrossRefGoogle Scholar
  11. 11.
    De Santis, D., Zenzeri, J., Casadio, M., Masia, L., Riva, A., Morasso, P., et al. (2015). Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke. Frontiers in Human Neuroscience, 8, 1037.CrossRefGoogle Scholar
  12. 12.
    Reinkensmeyer, D. J., Lehman, S. L., & Lum, P. S. (1993). A bimanual therapy robot: controller design and prototype experiments. Proc. IEEE the 15th Annual Internal. Conf. on Engineering in Medicine and Biology Society, 938-939.Google Scholar
  13. 13.
    Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83(7), 952–959.CrossRefGoogle Scholar
  14. 14.
    Burgar, C. G., Lum, P. S., Shor, P. C., & Van der Loos, H. M. (2000). Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 37(6), 663–674.Google Scholar
  15. 15.
    WANG, W.-W., FU, L.-C. (2011). Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system. Proceedings of the IEEE International Workshop on Medical Measurements and Applications (MeMeA), pp. 370–375.Google Scholar
  16. 16.
    Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., et al. (2007). Practical motion capture in everyday surroundings. ACM Transactions on Graphics (TOG), 26(3), 35.CrossRefGoogle Scholar
  17. 17.
    Luinge, H. J., & Veltink, P. H. (2005). Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical & Biological Engineering & Computing, 43(2), 273–282.CrossRefGoogle Scholar
  18. 18.
    Hyde, R. A., Ketteringham, L. P., Neild, S. A., & Jones, R. J. (2008). Estimation of upper-limb orientation based on accelerometer and gyroscope measurements. IEEE Transactions on Biomedical Engineering, 55(2), 746–754.CrossRefGoogle Scholar
  19. 19.
    Zhu, R., & Zhou, Z. (2004). A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 295–302.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhou, H., Hu, H., & Tao, Y. (2006). Inertial measurements of upper limb motion. Medical & Biological Engineering & Computing, 44(6), 479–487.CrossRefGoogle Scholar
  21. 21.
    Schiele, A., & van der Helm, F. C. (2006). Kinematic design to improve ergonomics in human machine interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(4), 456–469.CrossRefGoogle Scholar
  22. 22.
    Zhou, H., & Hu, H. (2010). Reducing drifts in the inertial measurements of wrist and elbow positions. IEEE Transactions on Instrumentation and Measurement, 59(3), 575–585.CrossRefGoogle Scholar
  23. 23.
    Beom, J., Koh, S., Nam, H. S., Kim, W., Kim, Y., Seo, H. G., et al. (2016). Robotic mirror therapy system for functional recovery of hemiplegic arms. Journal of Visualized Experiments (JoVE), 114, e54521–e54521.Google Scholar
  24. 24.
    Iosa, M., Morone, G., Cherubini, A., & Paolucci, S. (2016). The three laws of neurorobotics: A review on what neurorehabilitation robots should do for patients and clinicians. Journal of Medical and Biological Engineering, 36(1), 1–11.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2018

Authors and Affiliations

  • Wonshik Kim
    • 1
  • Jaewon Beom
    • 2
  • Chulwoo Park
    • 3
  • Sukgyu Koh
    • 1
  • Yoon Jae Kim
    • 1
  • Youdan Kim
    • 3
  • Sun Gun Chung
    • 4
  • Sungwan Kim
    • 5
    • 6
    Email author
  1. 1.Interdisciplinary Program for Bioengineering, Graduate SchoolSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Physical Medicine and RehabilitationChung-Ang University College of MedicineSeoulSouth Korea
  3. 3.Department of Mechanical and Aerospace EngineeringSeoul National University College of EngineeringSeoulSouth Korea
  4. 4.Department of Rehabilitation Medicine, Seoul National University College of MedicineSeoul National University HospitalSeoulSouth Korea
  5. 5.Department of Biomedical EngineeringSeoul National University College of MedicineSeoulSouth Korea
  6. 6.Institute of Medical and Biological EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations