Advertisement

Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 325–335 | Cite as

A Saliency-based Unsupervised Method for Angiectasia Detection in Endoscopic Video Frames

  • Farah Deeba
  • Shahed K. Mohammed
  • Francis M. Bui
  • Khan A. Wahid
Original Article
  • 81 Downloads

Abstract

The detection of angiectasia, the primary suspected lesion in patients with obscure gastrointestinal bleeding, presents a challenging problem for physicians. In this paper, we present a saliency based unsupervised method for automatic localization and detection of angiectasia in wired and capsule endoscopic images. To achieve comparable illumination in images from both modalities, image enhancement based on Retinex is performed on the capsule endoscopic images. A saliency detection algorithm has been proposed where the saliency map is formed from the processed images using two distinctness measures: pattern distinctness and color distinctness. The angiectasia specific saliency detection algorithm is able to highlight the lesion affected areas. An adaptive thresholding is performed based on the saliency peaks detected from the gradient images. The performance of the proposed method is evaluated on a dataset consisting of 3602 images, among which 968 images show the indication of angiectasia. The method achieves very high localization score (95.04%), localization precision, moderate specificity (>80%) and a very low detection latency (<0.2 s) for both imaging modalities. A comparison with state-of-the-art saliency detection methods exhibits the efficacy of proposed saliency detection algorithm for angiectasia localization and detection.

Keywords

Angiectasia Endoscopy Retinex Saliency detection Detection latency 

References

  1. 1.
    Keuchel, M., Hagenmüller, F., & Tajiri, H. (2014). Video capsule endoscopy: A reference guide and atlas. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Höög, C. M., Broström, O., Lindahl, T. L., Hillarp, A., Lärfars, G., & Sjöqvist, U. (2010). Bleeding from gastrointestinal angioectasias is not related to bleeding disorders—a case control study. BMC gastroenterology, 10(1), 113.CrossRefGoogle Scholar
  3. 3.
    Raju, G. S., Gerson, L., Das, A., & Lewis, B. (2007). American Gastroenterological Association (AGA) Institute Technical Review on Obscure Gastrointestinal Bleeding. Gastroenterology, 133(5), 1697–1717.CrossRefGoogle Scholar
  4. 4.
    Cúrdia Gonçalves, T., Magalhães, J., Boal Carvalho, P., Moreira, M. J., Rosa, B., & Cotter, J. (2014). Is it possible to predict the presence of intestinal angioectasias? Diagnostic and therapeutic endoscopy. doi: 10.1155/2014/461602.Google Scholar
  5. 5.
    Bollinger, E., Raines, D., & Saitta, P. (2012). Distribution of bleeding gastrointestinal angioectasias in a Western population. World Journal of Gastroenterology, 18(43), 6235–6239.CrossRefGoogle Scholar
  6. 6.
    Gunjan, D., Sharma, V., Rana, S. S., & Bhasin, D. K. (2014). Small bowel bleeding: A comprehensive review. Gastroenterology Report, 2(4), 262–275.CrossRefGoogle Scholar
  7. 7.
    Sami, S. S., Al-Araji, S. A., & Ragunath, K. (2014). Review article: Gastrointestinal angiodysplasia-pathogenesis, diagnosis and management. Alimentary Pharmacology & Therapeutics, 39(1), 15–34.CrossRefGoogle Scholar
  8. 8.
    Iakovidis, D. K., & Koulaouzidis, A. (2015). Software for enhanced video capsule endoscopy: Challenges for essential progress. Nature Reviews Gastroenterology & Hepatology, 12(3), 172–186.CrossRefGoogle Scholar
  9. 9.
    Liedlgruber, M., & Uhl, A. (2011). Computer-aided decision support systems for endoscopy in the gastrointestinal tract: A review. IEEE Reviews in Biomedical Engineering, 4, 73–88.CrossRefGoogle Scholar
  10. 10.
    Yuan, Y., Li, B., & Meng, Q. (2016). Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE Journal Biomedical and Health Informatics, 20(2), 624–630.CrossRefGoogle Scholar
  11. 11.
    Iakovidis, D. K., Chatzis, D., Chrysanthopoulos, P., & Koulaouzidis, A. (2015). Blood detection in wireless capsule endoscope images based on salient superpixels. In: 37th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), (pp. 731–734).Google Scholar
  12. 12.
    Yuan, Y., Wang, J., Li, B., & Meng, M. (2015). Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Transactions on Medical Imaging, 34(10), 2046–2057.CrossRefGoogle Scholar
  13. 13.
    Deeba, F., Mohammed, S. K., Bui, F., & Wahid, K. (2017). Efficacy evaluation of save for the diagnosis of superficial neoplastic lesion. IEEE Journal of Translational Engineering in Health and Medicine. doi: 10.1109/JTEHM.2017.2691339.Google Scholar
  14. 14.
    Iakovidis, D. K., & Koulaouzidis, A. (2014). Automatic lesion detection in capsule endoscopy based on color saliency: Closer to an essential adjunct for reviewing software. Gastrointestinal Endoscopy, 80(5), 877–883.CrossRefGoogle Scholar
  15. 15.
    Stockman, D. L. (2016). Diagnostic pathology: Vascular. Netherland: Elsevier.Google Scholar
  16. 16.
    Okuhata, H., Nakamura, H., Hara, S., Tsutsui, H., & Onoye, T. (2013). Application of the real-time Retinex image enhancement for endoscopic images. In: 2013 35th Annual International Conference of the IEE, Engineering in Medicine and Biology Society (EMBC), pp. 3407–3410.Google Scholar
  17. 17.
    Kimmel, R., Elad, M., Shaked, D., Keshet, R., & Sobel, I. (2003). A variational framework for retinex. International Journal of Computer Vision, 52(1), 7–23.CrossRefzbMATHGoogle Scholar
  18. 18.
    Land, E. H. (1977). The retinex theory of color vision. Scientific American, 237, 108–128.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Deeba, F., Mohammed, S. K., Bui, F. M., & Wahid, K. A. (2016). Unsupervised Abnormality Detection Using Saliency and Retinex based Color Enhancement. In: The 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3871–3874.Google Scholar
  20. 20.
    Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct?. In: Proceedings of IEEE Computer Society Conference Computer Vision Pattern Recognition, 1139–1146.Google Scholar
  21. 21.
    Cheng, W. C., Cheng, H. C., Chen, P. J., Kang, J. W., Yang, E. H., Sheu, B.-S., et al. (2015). Higher net change of index of hemoglobin values between colon polyp and nonpolyp mucosa correlates with the presence of an advanced colon adenoma. Advances in Digestive Medicine. doi: 10.1016/j.aidm.2015.04.005.Google Scholar
  22. 22.
    Kobayashi, K., Igarashi, M., Sada, M., Katsumata, T., & Saigenji, K. (2002). Clinical significance of adaptive index of hemoglobin color enhancement for endoscopic diagnosis of superficial type colorectal tumors. Digestive Endoscopy, 14(s1), S51–S53.CrossRefGoogle Scholar
  23. 23.
    CapsuleEndoscopy.org. Retrieved from http://www.capsuleendoscopy.org/Pages/default.aspx.
  24. 24.
    El Atlas Gastrointestinal. Retrieved from http://www.gastrointestinalatlas.com/.
  25. 25.
    Sainju, S., Bui, F. M., & Wahid, K. A. (2014). Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. Journal of Medical Systems, 38(4), 25.CrossRefGoogle Scholar
  26. 26.
    Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2016). Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 35(2), 630–644.CrossRefGoogle Scholar
  27. 27.
    Koulaouzidis, A., Rondonotti, E., & Karargyris, A. (2013). Small-bowel capsule endoscopy: A ten-point contemporary. World Journal of Gastroenterology, 19(24), 3726–3746.CrossRefGoogle Scholar
  28. 28.
    Hou, X., Harel, J., & Koch, C. (2012). Image signature: Highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 194–201.CrossRefGoogle Scholar
  29. 29.
    Harel, J., Koch, C., & Perona, P. (2007). Graph-based visual saliency. In Advances in neural information processing systems, 545–552.Google Scholar
  30. 30.
    Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.CrossRefGoogle Scholar
  31. 31.
    WEO Clinical Endoscopy Atlas (2014). http://www.endoatlas.org/. Accessed 25 May 2016.

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations