Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 273–283 | Cite as

An Explicit Method for Analysis of Three-Dimensional Linear and Angular Velocity of a Joint, with Specific Application to the Knee Joint

  • Mehdi Shekarforoush
  • Kristen I. Barton
  • Mohammad Atarod
  • Bryan J. Heard
  • John L. Sevick
  • Ryan Martin
  • David A. Hart
  • Cyril B. Frank
  • Nigel G. Shrive
Original Article
  • 59 Downloads

Abstract

Velocity analysis in a joint is a major area of interest in research involving the dynamics of joints and in diagnosing and monitoring the progression of some diseases such as osteoarthritis. In this study, we provide a general analytical method to determine three-dimensional linear and angular velocity of a joint. The formulations presented are explicit, having neither the limitations of numerical methods nor the necessity of simplifying the joint to a hinge or spherical (ball and socket) joint. In addition to conventional analysis of joint kinematics where only the position and orientation of the joint is considered, velocity analysis provides more information regarding the dynamics of the joint. The methodology presented is a systematic approach and can be used for various joints. As an example, a formulation to measure the velocity of the tibiofemoral component of a knee joint is presented, in terms of clinical rotations by using a joint coordinate system. The method is used to examine the in vivo velocity formulations in five ovine stifle (knee) joints by using joint kinematic data measured with an instrumented spatial linkage. The results demonstrate that the classical hinge model of the knee joint cannot predict the exact three-dimensional velocity of the knee joint through the gait cycle for all subjects.

Keywords

Kinematics Velocity analysis Linear velocity Angular velocity Knee joint 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, The Arthritis Society, the Osteoarthritis Team of Alberta Innovates Health Solutions, and the University of Calgary. The technical support of Leslie Jacques and Yamini Achari was much appreciated.

Compliance with Ethical Standards

Conflicts of interest

The authors have no conflicts of interest to disclose regarding the present study.

References

  1. 1.
    Granata, K. P., Abel, M. F., & Damiano, D. L. (2000). Joint angular velocity in spastic gait and the influence of muscle-tendon lengthening. The Journal of Bone and Joint Surgery, 82(2), 174–186. doi: 10.1016/j.bbi.2008.05.010.CrossRefGoogle Scholar
  2. 2.
    Krawetz, P., & Nance, P. (1996). Gait analysis of spinal cord injured subjects: Effects of injury level and spasticity. Archives of Physical Medicine and Rehabilitation, 77(7), 635–638. doi: 10.1016/S0003-9993(96)90000-3.CrossRefGoogle Scholar
  3. 3.
    Beveridge, J. E., Heard, B. J., Shrive, N. G., & Frank, C. B. (2013). Tibiofemoral centroid velocity correlates more consistently with cartilage damage than does contact path length in two ovine models of stifle injury. Journal of Orthopaedic Research, 31(11), 1745–1756. doi: 10.1002/jor.22429.Google Scholar
  4. 4.
    Anderst, W. J., & Tashman, S. (2009). The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. Journal of Orthopaedic Research, 27(1), 71–77. doi: 10.1002/jor.20702.CrossRefGoogle Scholar
  5. 5.
    Barton, K. I., Shekarforoush, M., Heard, B. J., Sevick, J. L., Vakil, P., Atarod, M., et al. (2016). Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. Journal of Orthopaedic Research. doi: 10.1002/jor.23322.Google Scholar
  6. 6.
    Andriacchi, T. P., & Alexander, E. J. (2000). Studies of human locomotion: Past, present and future. Journal of Biomechanics, 33(10), 1217–1224. doi: 10.1016/S0021-9290(00)00061-0.CrossRefGoogle Scholar
  7. 7.
    Schuler, N. B., Bey, M. J., Shearn, J. T., & Butler, D. L. (2005). Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics. Journal of Biomechanics, 38(10), 2113–2117. doi: 10.1016/j.jbiomech.2004.09.015.CrossRefGoogle Scholar
  8. 8.
    Andriacchi, T. P., Briant, P. L., Bevill, S. L., & Koo, S. (2006). Rotational changes at the knee after ACL injury cause cartilage thinning. Clinical Orthopaedics and Related Research, 442(442), 39–44. doi: 10.1097/01.blo.0000197079.26600.09.CrossRefGoogle Scholar
  9. 9.
    Huang, S. C., Wei, I. P., Chien, H. L., Wang, T. M., Liu, Y. H., Chen, H. L., et al. (2008). Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Medical Engineering & Physics, 30(8), 997–1003. doi: 10.1016/j.medengphy.2008.02.006.CrossRefGoogle Scholar
  10. 10.
    Wang, T. M., Yen, H. C., Lu, T. W., Chen, H. L., Chang, C. F., Liu, Y. H., et al. (2009). Bilateral knee osteoarthritis does not affect inter-joint coordination in older adults with gait deviations during obstacle-crossing. Journal of Biomechanics, 42(14), 2349–2356. doi: 10.1016/j.jbiomech.2009.06.029.CrossRefGoogle Scholar
  11. 11.
    Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Bio-Medical Engineering, 44(3), 136–147. doi: 10.1109/10.554760.CrossRefGoogle Scholar
  12. 12.
    Zeng, H., & Zhao, Y. (2011). Sensing movement: Microsensors for body motion measurement. Sensors. doi: 10.3390/s110100638.Google Scholar
  13. 13.
    Khan, H., Walker, P. S., Zuckerman, J. D., Slover, J., Jaffe, F., Karia, R. J., et al. (2013). The potential of accelerometers in the evaluation of stability of total knee arthroplasty. Journal of Arthroplasty, 28(3), 459–462. doi: 10.1016/j.arth.2012.07.025.CrossRefGoogle Scholar
  14. 14.
    Ayrulu-Erdem, B., & Barshan, B. (2011). Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals. Sensors, 11(2), 1721–1743. doi: 10.3390/s110201721.CrossRefGoogle Scholar
  15. 15.
    Catalfamo, P., Ghoussayni, S., & Ewins, D. (2010). Gait event detection on level ground and incline walking using a rate gyroscope. Sensors, 10(6), 5683–5702. doi: 10.3390/s100605683.CrossRefGoogle Scholar
  16. 16.
    Tunçel, O., Altun, K., & Barshan, B. (2009). Classifying human leg motions with uniaxial piezoelectric gyroscopes. Sensors, 9(11), 8508–8546. doi: 10.3390/s91108508.CrossRefGoogle Scholar
  17. 17.
    Behnam, A. J., Herzka, D. A., & Sheehan, F. T. (2011). Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. Journal of Biomechanics, 44(1), 193–197. doi: 10.1016/j.jbiomech.2010.08.029.CrossRefGoogle Scholar
  18. 18.
    Li, G., Park, S. E., DeFrate, L. E., Schutzer, M. E., Ji, L., Gill, T. J., et al. (2005). The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clinical Biomechanics, 20(7), 736–744. doi: 10.1016/j.clinbiomech.2005.04.001.CrossRefGoogle Scholar
  19. 19.
    DeFrate, L. E., Gill, T. J., & Li, G. (2004). In vivo function of the posterior cruciate ligament during weightbearing knee flexion. The American Journal of Sports Medicine, 32, 1923–1928. doi: 10.1177/0363546504264896.CrossRefGoogle Scholar
  20. 20.
    Defrate, L. E., Sun, H., Gill, T. J., Rubash, H. E., & Li, G. (2004). In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of Biomechanics, 37(10), 1499–1504. doi: 10.1016/j.jbiomech.2004.01.012.CrossRefGoogle Scholar
  21. 21.
    Chen, C. H., Li, J. S., Hosseini, A., Gadikota, H. R., Gill, T. J., & Li, G. (2012). Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait and Posture, 35(3), 467–471. doi: 10.1016/j.gaitpost.2011.11.009.CrossRefGoogle Scholar
  22. 22.
    Defrate, L. E., Papannagari, R., Gill, T. J., Moses, J. M., Pathare, N. P., & Li, G. (2006). The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: An in vivo imaging analysis. The American Journal of Sports Medicine, 34(8), 1240–1246. doi: 10.1177/0363546506287299.CrossRefGoogle Scholar
  23. 23.
    Miranda, D. L., Rainbow, M. J., Crisco, J. J., & Fleming, B. C. (2013). Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. Journal of Biomechanics, 46(3), 567–573. doi: 10.1016/j.jbiomech.2012.09.023.CrossRefGoogle Scholar
  24. 24.
    Gatti, G., Mundo, D., & Danieli, G. (2010). Kinematic analysis and performance evaluation of 6R instrumented spatial linkages. Transactions of the Canadian Society for Mechanical Engineering, 34(1), 57–73.Google Scholar
  25. 25.
    Gatti, G. (2012). On the estimate of the two dominant axes of the knee using an instrumented spatial linkage. Journal of Applied Biomechanics, 28(2), 200–209. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21904008.
  26. 26.
    Bonny, D. P., Hull, M. L., & Howell, S. M. (2013). Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: A computational analysis. Journal of Biomechanical Engineering, 135(3), 31003. doi: 10.1115/1.4023135.CrossRefGoogle Scholar
  27. 27.
    Sholukha, V., Salvia, P., Hilal, I., Feipel, V., Rooze, M., & Jan, S. V. S. (2004). Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach. Medical Engineering & Physics, 26(3), 251–260. doi: 10.1016/j.medengphy.2003.10.002.CrossRefGoogle Scholar
  28. 28.
    Atarod, M., Rosvold, J. M., Frank, C. B., & Shrive, N. G. (2014). A novel testing platform for assessing knee joint mechanics: A parallel robotic system combined with an instrumented spatial linkage. Annals of Biomedical Engineering, 42(5), 1121–1132. doi: 10.1007/s10439-014-0985-9.CrossRefGoogle Scholar
  29. 29.
    Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics (Bristol, Avon), 22(2), 131–154. doi: 10.1016/j.clinbiomech.2006.09.005.CrossRefGoogle Scholar
  30. 30.
    Seel, T., Raisch, J., & Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. Sensors (Basel, Switzerland), 14(4), 6891–6909. doi: 10.3390/s140406891.CrossRefGoogle Scholar
  31. 31.
    Tognetti, A., Lorussi, F., Carbonaro, N., & de Rossi, D. (2015). Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors (Basel, Switzerland), 15(11), 28435–28455. doi: 10.3390/s151128435.CrossRefGoogle Scholar
  32. 32.
    Terrier, A., Aeberhard, M., Michellod, Y., Mullhaupt, P., Gillet, D., Farron, A., et al. (2010). A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Medical Engineering & Physics, 32(9), 1050–1056. doi: 10.1016/j.medengphy.2010.07.006.CrossRefGoogle Scholar
  33. 33.
    Lu, T. W., & O’Connor, J. J. (1999). Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics, 32(2), 129–134. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10052917.
  34. 34.
    Andersen, M. S., Benoit, D. L., Damsgaard, M., Ramsey, D. K., & Rasmussen, J. (2010). Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. Journal of Biomechanics, 43(2), 268–273. doi: 10.1016/j.jbiomech.2009.08.034.CrossRefGoogle Scholar
  35. 35.
    Charlton, I. W., Tate, P., Smyth, P., & Roren, L. (2004). Repeatability of an optimised lower body model. Gait & Posture, 20(2), 213–221. doi: 10.1016/j.gaitpost.2003.09.004.CrossRefGoogle Scholar
  36. 36.
    Preuschl, E., Hassmann, M., & Baca, A. (2016). A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo. Journal of Sports Science & Medicine, 15(1), 92–101. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26957931.
  37. 37.
    Lebiedowska, M. K., Sikdar, S., Eranki, A., & Garmirian, L. (2011). Knee joint angular velocities and accelerations during the patellar tendon jerk. Journal of Neuroscience Methods, 198(2), 255–259. doi: 10.1016/j.jneumeth.2011.04.018.CrossRefGoogle Scholar
  38. 38.
    Grood, E. S., & Suntay, W. J. (1983). A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. Journal of Biomechanical Engineering, 105(2), 136–144. doi: 10.1115/1.3138397.CrossRefGoogle Scholar
  39. 39.
    Levangie, P. K., & Cynthia, C. N. (2011). Joint structure and function: A comprehensive analysis (5th ed.). Philadelphia: F.A Davis Co.Google Scholar
  40. 40.
    Verstraete, M. C., & Soutas-Little, R. W. (1990). A method for computing the three-dimensional angular velocity and acceleration of a body segment from three-dimensional position data. Journal of Biomechanical Engineering, 112(2), 114. doi: 10.1115/1.2891161.CrossRefGoogle Scholar
  41. 41.
    Mulavara, A. P., Verstraete, M. C., & Bloomberg, J. J. (2002). Modulation of head movement control in humans during treadmill walking. Gait & Posture, 16(3), 271–282. doi: 10.1016/S0966-6362(02)00016-4.CrossRefGoogle Scholar
  42. 42.
    Miller, C. A., & Verstraete, M. C. (1999). A mechanical energy analysis of gait initiation. Gait & Posture, 9(3), 158–166. doi: 10.1016/S0966-6362(99)00008-9.CrossRefGoogle Scholar
  43. 43.
    Howard, R. A., Rosvold, J. M., Darcy, S. P., Corr, D. T., Shrive, N. G., Tapper, J. E., et al. (2007). Reproduction of in vivo motion using a parallel robot. Journal of Biomechanical Engineering, 129(5), 743–749. doi: 10.1115/1.2768983.CrossRefGoogle Scholar
  44. 44.
    Rosvold, J. M., Atarod, M., Frank, C. B., & Shrive, N. G. (2016). An instrumented spatial linkage for measuring knee joint kinematics. The Knee, 23(1), 43–48. doi: 10.1016/j.knee.2015.09.009.CrossRefGoogle Scholar
  45. 45.
    Zhuang, H., Roth, Z. S., & Hamano, F. (1992). A complete and parametrically continuous kinematic model for robot manipulators. IEEE Transactions on Robotics and Automation, 8(4), 451–463. doi: 10.1109/70.149944.CrossRefGoogle Scholar
  46. 46.
    Kotulski, Z. A., & Szczepinski, W. (2010). Error analysis with applications in engineering (Vol. 169). Dordrecht: Springer. doi: 10.1007/978-90-481-3570-7.MATHGoogle Scholar
  47. 47.
    Kessler, M. A., Behrend, H., Henz, S., Stutz, G., Rukavina, A., & Kuster, M. S. (2008). Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 16(5), 442–448. doi: 10.1007/s00167-008-0498-x.CrossRefGoogle Scholar
  48. 48.
    Frobell, R. B., Roos, E. M., Roos, H. P., Ranstam, J., & Lohmander, L. S. (2010). A randomized trial of treatment for acute anterior cruciate ligament tears. The New England Journal of Medicine, 363(4), 331–342. doi: 10.1056/NEJMoa0907797.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Mehdi Shekarforoush
    • 1
    • 2
  • Kristen I. Barton
    • 1
  • Mohammad Atarod
    • 1
    • 2
  • Bryan J. Heard
    • 1
  • John L. Sevick
    • 1
    • 2
  • Ryan Martin
    • 1
    • 3
  • David A. Hart
    • 1
  • Cyril B. Frank
    • 1
  • Nigel G. Shrive
    • 1
    • 2
  1. 1.McCaig Institute for Bone & Joint Health, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  3. 3.Section of OrthopaedicsUniversity of Calgary, Foothills HospitalCalgaryCanada

Personalised recommendations