Skip to main content

Advertisement

Log in

Finite Element Analysis of Tongue Type Calcaneal Fracture with Open Reduction and Internal Fixation with Locking Plate

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Open reduction and internal fixation (ORIF) with plate is the standard treatment for displaced intra-articular calcaneal fractures. We constructed a three-dimensional complete foot finite element model, which was also modified to evaluate the biomechanical effect of Sanders IIB tongue-type calcaneal fracture treated by ORIF with locking plate. We compared plates with locking screws (LSs) and those with non-locking screws (NSs). Static standing was simulated by applying ground reaction force and the pulling force of the Achilles tendon. ORIF with plate using NS or LS provided good stability for Sanders IIB tongue-type calcaneal fracture and might allow light touch weight-bearing in the early postoperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Richter, M., Gosling, T., Zech, S., Allami, M., Geerling, J., Droste, P., et al. (2005). A comparison of plates with and without locking screws in a calcaneal fracture model. Foot and Ankle International, 26(4), 309–319.

    Article  Google Scholar 

  2. Stoffel, K., Booth, G., Rohrl, S. M., & Kuster, M. (2007). A comparison of conventional versus locking plates in intraarticular calcaneus fractures: A biomechanical study in human cadavers. Clinical Biomechanics, 22(1), 100–105.

    Article  Google Scholar 

  3. Chen, K., Zhang, H., Wang, G., Cheng, Y., Qian, Z., & Yang, H. (2014). Comparison of nonlocking plates and locking plates for intraarticular calcaneal fracture. Foot and Ankle International, 35(12), 1298–1302.

    Article  Google Scholar 

  4. Redfern, D. J., Oliveira, M. L., Campbell, J. T., & Belkoff, S. M. (2006). A biomechanical comparison of locking and nonlocking plates for the fixation of calcaneal fractures. Foot and Ankle International, 27(3), 196–201.

    Article  Google Scholar 

  5. Blake, M. H., Owen, J. R., Sanford, T. S., Wayne, J. S., & Adelaar, R. S. (2011). Biomechanical evaluation of a locking and nonlocking reconstruction plate in an osteoporotic calcaneal fracture model. Foot and Ankle International, 32(4), 432–436.

    Article  Google Scholar 

  6. Illert, T., Rammelt, S., Drewes, T., Grass, R., & Zwipp, H. (2011). Stability of locking and non-locking plates in an osteoporotic calcaneal fracture model. Foot and Ankle International, 32(3), 307–313.

    Article  Google Scholar 

  7. Yu, B., Chen, W.-C., Lee, P.-Y., Lin, K.-P., Lin, K.-J., Tsai, C.-L., et al. (2016). Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: A finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering. doi:10.1080/10255842.2016.1142534.

    Google Scholar 

  8. Ni, M., Weng, X.-H., Mei, J., & Niu, W.-X. (2015). Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: A finite element analysis. Journal of Medical and Biological Engineering, 35(2), 236–241.

    Article  Google Scholar 

  9. Pang, Q.-J., Yu, X., & Guo, Z.-H. (2014). The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: A finite element analysis. Pakistan Journal of Medical Sciences, 30(5), 1099.

    Google Scholar 

  10. Wright, D., & Rennels, D. (1964). A study of the elastic properties of plantar fascia. Journal of Bone and Joint Surgery (American Volume), 46(3), 482–492.

    Article  Google Scholar 

  11. Siegler, S., Block, J., & Schneck, C. D. (1988). The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot and Ankle International, 8(5), 234–242.

    Article  Google Scholar 

  12. Lemmon, D., Shiang, T., Hashmi, A., Ulbrecht, J. S., & Cavanagh, P. R. (1997). The effect of insoles in therapeutic footwear—A finite element approach. Journal of Biomechanics, 30(6), 615–620.

    Article  Google Scholar 

  13. Cheung, J. T.-M., An, K.-N., & Zhang, M. (2006). Consequences of partial and total plantar fascia release: A finite element study. Foot and Ankle International, 27(2), 125–132.

    Article  Google Scholar 

  14. Follet, H., Peyrin, F., Vidal-Salle, E., Bonnassie, A., Rumelhart, C., & Meunier, P. (2007). Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. Journal of Biomechanics, 40(10), 2174–2183.

    Article  Google Scholar 

  15. Simkin, A. (1982). Structural analysis of the human foot in standing posture. Tel-Aviv University.

  16. Hsu, Y.-C., Gung, Y.-W., Shih, S.-L., Feng, C.-K., Wei, S.-H., Yu, C.-H., et al. (2008). Using an optimization approach to design an insole for lowering plantar fascia stress—A finite element study. Annals of Biomedical Engineering, 36(8), 1345–1352.

    Article  Google Scholar 

  17. Sanders, R., Fortin, P., DiPasquale, T., & Walling, A. (1993). Operative treatment in 120 displaced intraarticular calcaneal fractures results using a prognostic computed tomography scan classification. Clinical Orthopaedics and Related Research, 290, 87–95.

    Google Scholar 

  18. Essex-Lopresti, P. (1952). The mechanism, reduction technique, and results in fractures of the os calcis. British Journal of Surgery, 39(157), 395–419.

    Article  Google Scholar 

  19. Chang, C.-L., Chen, C.-S., Huang, C.-H., & Hsu, M.-L. (2012). Finite element analysis of the dental implant using a topology optimization method. Medical Engineering and Physics. doi:10.1016/j.medengphy.2012.06.004.

    Google Scholar 

  20. Pendergast, M., & Rusovici, R. (2015). A finite element parametric study of clavicle fixation plates. International Journal for Numerical Methods in Biomedical Engineering. doi:10.1002/cnm.2710.

    Google Scholar 

  21. Sun, P.-C., Shih, S.-L., Chen, Y.-L., Hsu, Y.-C., Yang, R.-C., & Chen, C.-S. (2012). Biomechanical analysis of foot with different foot arch heights: A finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 15(6), 563–569.

    Article  Google Scholar 

  22. Schepers, T., van Lieshout, E. M., Ginai, A. Z., Mulder, P. G., Heetveld, M. J., & Patka, P. (2009). Calcaneal fracture classification: A comparative study. The Journal of Foot and Ankle Surgery, 48(2), 156–162.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported partly by Taipei Veterans General Hospital (V104C-177 and V106C-145) and by Ministry of Science and Technology, ROC (MOST 104-2314-B-075-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ching Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Huang, YH., Hung, C. et al. Finite Element Analysis of Tongue Type Calcaneal Fracture with Open Reduction and Internal Fixation with Locking Plate. J. Med. Biol. Eng. 38, 1–9 (2018). https://doi.org/10.1007/s40846-017-0296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0296-3

Keywords

Navigation