Journal of Medical and Biological Engineering

, Volume 38, Issue 2, pp 304–315 | Cite as

A Diagnostic System for Detection of Atrial and Ventricular Arrhythmia Episodes from Electrocardiogram

  • Apoorv Chetan
  • Rajesh K. TripathyEmail author
  • Samarendra Dandapat
Original Article


Cardiac arrhythmias, with each passing day, are becoming highly prevalent in modern society. The ever increasing number of patients added to the sheer amount of data that is recorded from a patient during monitoring limits the ability of a medical practitioner to diagnose these problems quickly. Therefore, an intelligent system is required which can produce a reliable diagnosis in a short period of time. In this paper, a new intelligent diagnostic system for detection of atrial arrhythmia (atrial flutter and atrial fibrillation) and ventricular arrhythmia (premature ventricular contractions, ventricular bigeminy, ventricular escape rhythm, ventricular tachycardia and ventricular fibrillation) episodes from Electrocardiogram (ECG) is proposed. This system is based on the non-linear analysis of the variational modes of ECG. Variational mode decomposition is used for decomposition of ECG signal into several modes. Then, the non-linear features namely, the distribution entropy and the sample entropy are evaluated from the modes of ECG. The performance of variational mode distribution entropy (VMDE) and variational mode sample entropy (VMSE) features is assessed using support vector machine (SVM) and adaptive neuro-fuzzy inference system classifiers. Experimental results reveal that, the combination of VMDE and VMSE features, and the radial basis function kernel based multi-class SVM classifier are suitable for detection of arrhythmia episodes from ECG with an average accuracy value of 95.60%.


Electrocardiogram Cardiac arrhythmia Variational mode decomposition Sample entropy Distribution entropy Classifiers 


  1. 1.
    World Health Organisation (2016). WHO factsheet on cardiovascular diseases. Resource document.Google Scholar
  2. 2.
  3. 3.
    Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39(14), 11792–11800.CrossRefGoogle Scholar
  4. 4.
    Heart, R. S., Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., et al. (2006). ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). Journal of the American College of Cardiology, 48(4), 854.CrossRefGoogle Scholar
  5. 5.
    Soliman, E. Z., Safford, M. M., Muntner, P., Khodneva, Y., Dawood, F. Z., Zakai, N. A., et al. (2014). Atrial fibrillation and the risk of myocardial infarction. JAMA Internal Medicine, 174(1), 107–114.CrossRefGoogle Scholar
  6. 6.
    Surawicz, B., & Knilans, T. (2008). Chou’s electrocardiography in clinical practice: Adult and pediatric (6th ed.). Philadelphia: Elsevier Health Sciences.Google Scholar
  7. 7.
    Lee, S. H., & Yoon, Y. R. (2016). Method for detecting ventricular activity of ECG using adaptive threshold. Journal of Medical and Biological Engineering, 36(3), 410–419.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yeh, Y. C., Chiou, C. W., & Lin, H. J. (2012). Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Systems with Applications, 39(1), 1000–1010.CrossRefGoogle Scholar
  9. 9.
    Maji, U., Mitra, M., & Pal, S. (2016). Imposed target based modification of Taguchi method for feature optimisation with application in arrhythmia beat detection. Expert Systems with Applications, 56, 268–281.CrossRefGoogle Scholar
  10. 10.
    Melgani, F., & Bazi, Y. (2008). Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Transactions on Information Technology in Biomedicine, 12(5), 667–677.CrossRefGoogle Scholar
  11. 11.
    DoğAn, B., & Korürek, M. (2012). A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains. Applied Soft Computing, 12(11), 3442–3451.CrossRefGoogle Scholar
  12. 12.
    Cerutti, S., Mainardi, L. T., Porta, A., & Bianchi, A. M. (1997, September). Analysis of the dynamics of RR interval series for the detection of atrial fibrillation episodes. In Computers in Cardiology 1997 (pp. 77–80). IEEE.Google Scholar
  13. 13.
    Özbay, Y., Ceylan, R., & Karlik, B. (2011). Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier. Expert Systems with Applications, 38(1), 1004–1010.CrossRefGoogle Scholar
  14. 14.
    Lin, C. H., Du, Y. C., & Chen, T. (2008). Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Systems with Applications, 34(4), 2601–2611.CrossRefGoogle Scholar
  15. 15.
    Owis, M. I., Abou-Zied, A. H., Youssef, A. B., & Kadah, Y. M. (2002). Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Transactions on Biomedical Engineering, 49(7), 733–736.CrossRefGoogle Scholar
  16. 16.
    Tripathy, R. K., Sharma, L. N., & Dandapat, S. (2016). Detection of shockable ventricular arrhythmia using variational mode decomposition. Journal of Medical Systems, 40(4), 1–13.CrossRefGoogle Scholar
  17. 17.
    Khalaf, A. F., Owis, M. I., & Yassine, I. A. (2015). A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Systems with Applications, 42(21), 8361–8368.CrossRefGoogle Scholar
  18. 18.
    Lanata, A., Valenza, G., Mancuso, C., & Scilingo, E. P. (2011). Robust multiple cardiac arrhythmia detection through bispectrum analysis. Expert Systems with Applications, 38(6), 6798–6804.CrossRefGoogle Scholar
  19. 19.
    Yu, S. N., & Chou, K. T. (2008). Integration of independent component analysis and neural networks for ECG beat classification. Expert Systems with Applications, 34(4), 2841–2846.CrossRefGoogle Scholar
  20. 20.
    Slocum, J., Sahakian, A., & Swiryn, S. (1992). Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. Journal of Electrocardiology, 25(1), 1–8.CrossRefGoogle Scholar
  21. 21.
    Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mert, A. (2016). ECG feature extraction based on the bandwidth properties of variational mode decomposition. Physiological Measurement, 37(4), 530.CrossRefGoogle Scholar
  23. 23.
    Goldberger, A. L. (2012). Clinical electrocardiography: A simplified approach (8th ed.). Philadelphia: Elsevier Health Sciences.Google Scholar
  24. 24.
    Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049.CrossRefGoogle Scholar
  25. 25.
    Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2015). Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & Biological Engineering & Computing, 53(1), 77–87.CrossRefGoogle Scholar
  26. 26.
    Liang, Q. Z., Guo, X. M., Zhang, W. Y., Dai, W. D., & Zhu, X. H. (2015). Identification of heart sounds with arrhythmia based on recurrence quantification analysis and Kolmogorov entropy. Journal of Medical and Biological Engineering, 35(2), 209–217.CrossRefGoogle Scholar
  27. 27.
    Moody, G. B., & Mark, R. G. (1983). A new method for detecting atrial fibrillation using RR intervals. Computers in Cardiology, 10(1), 227–230.Google Scholar
  28. 28.
    Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet. Circulation, 101(23), e215–e220.CrossRefGoogle Scholar
  29. 29.
    Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50.CrossRefGoogle Scholar
  30. 30.
    Rangayyan, R. M. (2015). Biomedical signal analysis (Vol. 33). NewYork: Wiley.CrossRefGoogle Scholar
  31. 31.
    Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Transactions on Biomedical Engineering, 61(6), 1607–1613.CrossRefGoogle Scholar
  32. 32.
    Sharma, L. N., Tripathy, R. K., & Dandapat, S. (2015). Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Transactions on Biomedical Engineering, 62(7), 1827–1837.CrossRefGoogle Scholar
  33. 33.
    Alcaraz, R., Sandberg, F., Sörnmo, L., & Rieta, J. J. (2011). Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings. IEEE Transactions on Biomedical Engineering, 58(5), 1441–1449.CrossRefGoogle Scholar
  34. 34.
    Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A., & Rojo-Alvarez, J. L. (2014). Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Transactions on Biomedical Engineering, 61(3), 832–840.CrossRefGoogle Scholar
  35. 35.
    Lahmiri, S. (2014). Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthcare technology letters, 1(3), 104–109.CrossRefGoogle Scholar
  36. 36.
    Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley.zbMATHGoogle Scholar
  37. 37.
    Andrew, A. M. (2000). An introduction to support vector machines and other kernel-based learning methods by Nello Christianini and John Shawe-Taylor, Cambridge University Press, Cambridge, 2000, xiii + 189 pp., ISBN 0-521-78019-5 (Hbk,£ 27.50).Google Scholar
  38. 38.
    Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
  39. 39.
    Übeyli, E. D. (2009). Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Computer Methods and Programs in Biomedicine, 93(3), 313–321.CrossRefGoogle Scholar
  40. 40.
    Buragohain, M., & Mahanta, C. (2006, September). ANFIS Modelling of Nonlinear System Based on Subtractive Clustering and V-fold Technique. In India conference, 2006 annual IEEE (pp. 1–6). IEEE.Google Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  1. 1.Department of Applied SciencesIndian Institute of Information Technology (IIIT) AllahabadAllahabadIndia
  2. 2.Faculty of Engineering (ITER)Shiksha O Anusandhan UniversityBhubaneshwarIndia
  3. 3.Department of Electronics and Electrical EngineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiIndia

Personalised recommendations