Abstract
Epilepsy is a well known neurological disorder characterized by the presence of recurrent seizures. Electroencephalograms (EEGs) record electrical activity in the brain and are used to detect epilepsy. Traditional EEG analysis methods for epileptic seizure detection are time-consuming, which has led to the recent proposal of several automated seizure detection frameworks. Feature extraction and classification are two important steps in this procedure. Feature extraction focuses on finding the informative features that could be used in the classification step for correct decision making; therefore, proposing some effective feature extraction techniques for seizure detection is of great significance. This paper introduces two novel feature extraction techniques: local centroid pattern (LCP) and one-dimensional local ternary pattern (1D-LTP) for seizure detection in EEG signal. Both the techniques are computationally simple and easy to implement. In both the techniques, the histograms are formed in the first step using the transformation code and then these histogram-based feature vectors are fed into a classifier in the second step. The performance of the proposed techniques was evaluated through 10-fold cross-validation tested on the benchmark dataset. Different machine learning classifiers were used for the classification. The experimental results show that LCP and 1D-LTP achieved the highest accuracy of 100% for the classification between normal and seizure EEG signals with the artificial neural network classifier. Nine different experimental cases have been tested. The results achieved for different experimental cases were higher than the results of some existing techniques in the literature. The experimental results indicate that LCP and 1D-LTP could be effective feature extraction techniques for seizure detection.
This is a preview of subscription content, access via your institution.









Notes
EEG time series dataset http://epileptologie-bonn.de/cms/front_content.php?idcat=193lang=3changelang=3.
References
World Health Organization, Fact Sheet. (2016). Epilepsy. Retrieved June, 2016 from http://www.who.int/mediacentre/factsheets/fs999/en/.
Ray, G. C. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing, 42(9), 2276–2279.
Iasemidis, L. D., Shiau, D. S., Chaovalitwongse, W., Sackellares, J. C., Pardalos, P. M., Principe, J. C., et al. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.
Altunay, S., Telatar, Z., & Erogul, O. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661–5665.
Chandaka, S., Chatterjee, A., & Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36(2), 1329–1336.
Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.
Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.
Duque-Muñoz, L., Espinosa-Oviedo, J. J., & Castellanos-Dominguez, C. G. (2014). Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms. Biomedical engineering online, 13(1), 1.
Faust, O., Acharya, U. R., Adeli, H., & Adeli, A. (2015). Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 26, 56–64.
Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45, 147–165.
Swami, P., Gandhi, T. K., Panigrahi, B. K., Bhatia, M., Santhosh, J., & Anand, S. (2016). A comparative account of modelling seizure detection system using wavelet techniques. International Journal of Systems Science: Operations & Logistics. doi:10.1080/23302674.2015.1116637.
Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.
Chen, L. L., Zhang, J., Zou, J. Z., Zhao, C. J., & Wang, G. S. (2014). A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomedical Signal Processing and Control, 10, 1–10.
Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2027–2036.
Swami, P., Gandhi, T. K., Panigrahi, B. K., Tripathi, M., & Anand, S. (2016). A novel robust diagnostic model to detect seizures in electroencephalography. Expert Systems with Applications, 56, 116–130.
Li, D., Xie, Q., Jin, Q., & Hirasawa, K. (2016). A sequential method using multiplicative extreme learning machine for epileptic seizure detection. Neurocomputing, 214, 692–707.
Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2016). ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egyptian Informatics Journal. doi:10.1016/j.eij.2016.05.001.
Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.
Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.
Acharya, U. R., Fujita, H., Sudarshan, V. K., Bhat, S., & Koh, J. E. (2015). Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowledge-Based Systems, 88, 85–96.
Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37(12), 8659–8666.
Acharya, U. R., Sree, S. V., Alvin, A. P. C., & Suri, J. S. (2012). Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Systems with Applications, 39(10), 9072–9078.
Acharya, U. R., Sree, S. V., Chattopadhyay, S., Yu, W., & Ang, P. C. A. (2011). Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International Journal of Neural Systems, 21(03), 199–211.
Niknazar, M., Mousavi, S. R., Vahdat, B. V., & Sayyah, M. (2013). A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE J Biomed Health Inform, 17(3), 572–578.
Du, X., Dua, S., Acharya, R. U., & Chua, C. K. (2012). Classification of epilepsy using high-order spectra features and principle component analysis. Journal of Medical Systems, 36(3), 1731–1743.
Acharya, U. R., Yanti, R., Zheng, J. W., Krishnan, M. M. R., Tan, J. H., Martis, R. J., et al. (2013). Automated diagnosis of epilepsy using CWT, HOS and texture parameters. International Journal of Neural Systems, 23(03), 1350009.
Acharya, U. R., Sree, S. V., & Suri, J. S. (2011). Automatic detection of epileptic EEG signals using higher order cumulant features. International Journal of Neural Systems, 21(05), 403–414.
Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373–381.
Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135–1142.
Martis, R. J., Acharya, U. R., Tan, J. H., Petznick, A., Yanti, R., Chua, C. K., et al. (2012). Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. International Journal of Neural Systems, 22(06), 1250027.
Pachori, R. B., Sharma, R., & Patidar, S. (2015). Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In Quanmin Zhu & Ahmad Taher Azar (Eds.), Complex system modelling and control through intelligent soft computations (pp. 367–388). Cham: Springer.
Fu, K., Qu, J., Chai, Y., & Dong, Y. (2014). Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomedical Signal Processing and Control, 13, 15–22.
Bajaj, V., & Pachori, R. B. (2012). Separation of rhythms of EEG signals based on Hilbert-Huang transformation with application to seizure detection. In G. Lee, D. Howard, J. J. Kang, & D. Ślęzak (Eds.), Convergence and hybrid information technology. ICHIT 2012 (Vol. 7425)., Lecture Notes in Computer Science Berlin: Springer.
Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.
Chatlani, N., & Soraghan, J. J. (2010). Local binary patterns for 1-D signal processing. In 18th European Signal Processing Conference, Aalborg, pp. 95–99.
Kaya, Y., Uyar, M., Tekin, R., & Yıldırım, S. (2014). 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Applied Mathematics and Computation, 243, 209–219.
Kumar, T. S., Kanhangad, V., & Pachori, R. B. (2015). Classification of seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal Processing and Control, 15, 33–40.
Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.
Nanni, L., Brahnam, S., & Lumini, A. (2011). Local ternary patterns from three orthogonal planes for human action classification. Expert Systems with Applications, 38(5), 5125–5128.
Altınçay, H., & Erenel, Z. (2014). Ternary encoding based feature extraction for binary text classification. Applied intelligence, 41(1), 310–326.
Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligence—Volume 2 (IJCAI’95) (pp. 1137–1143). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.
Nigam, V. P., & Graupe, D. (2013). A neural-network-based detection of epilepsy. Neurological Research, 26(1), 55–60.
Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.
Orhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475–13481.
Nicolaou, N., & Georgiou, J. (2012). Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications, 39(1), 202–209.
Işik, H., & Sezer, E. (2012). Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman artificial neural networks and wavelet transform. Journal of Medical Systems, 36(1), 1–13.
Zhu, G., Li, Y., & Wen, P. P. (2014). Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Computer Methods and Programs in Biomedicine, 115(2), 64–75.
Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133, 271–279.
Joshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1–5.
Lee, S. H., Lim, J. S., Kim, J. K., Yang, J., & Lee, Y. (2014). Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Computer Methods and Programs in Biomedicine, 116(1), 10–25.
Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494–502.
Sharma, R., & Pachori, R. B. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications, 42(3), 1106–1117.
Tawfik, N. S., Youssef, S. M., & Kholief, M. (2015). A hybrid automated detection of epileptic seizures in EEG records. Computers & Electrical Engineering, 53, 177–193.
Tiwari, A., Pachori, R. B., Kanhangad, V., & Panigrahi, B. (2016). Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE Journal of Biomedical and Health Informatics. doi:10.1109/JBHI.2016.2589971.
Acknowledgements
The authors would like to thank Dr. R.G. Andrzejak of University of Bonn, Germany, for providing permission to use the EEG dataset available online.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they do not have any real or perceived conflicts of interest pertaining to the present study.
Rights and permissions
About this article
Cite this article
Jaiswal, A.K., Banka, H. Local Transformed Features for Epileptic Seizure Detection in EEG Signal. J. Med. Biol. Eng. 38, 222–235 (2018). https://doi.org/10.1007/s40846-017-0286-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40846-017-0286-5
Keywords
- Electroencephalogram (EEG) signals
- Local centroid pattern (LCP)
- One-dimensional local ternary pattern (1D-LTP)
- Feature extraction
- Classification