Skip to main content
Log in

An Approach for Enhancement of Microcalcifications in Mammograms

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Breast cancer is one of the prominent causes of female mortality in the world, and microcalcification clusters are the important indicators for breast cancer. Mammography is a useful procedure for revealing these indicators at an early stage. But the manual interpretation of microcalcifications is difficult due to low contrast with the background parenchymal tissue. This makes it hard to judge the size, shape and morphology of the microcalcifications. In this paper a methodology, which is a combination of morphological operations, unsharp masking and Gaussian filter, has been proposed for enhancement of mammograms to bring out the tiny details of microcalcifications present in a variety of nonhomogeneous background tissues while restoring their shape and size. For experiment the mammogram images, collected from Digital Database for Screening Mammography, have been used and the results are compared to standard methods like contrast limited adaptive histogram equalization, multi scale top-hat transform based algorithm and bi-histogram equalization with adaptive sigmoid functions. The results from both the qualitative and quantitative evaluations suggest that the proposed methodology is very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jagannath, H. S., Virmani, J., & Kumar, V. (2012). Morphological enhancement of microcalcifications in digital mammograms. Journal of the Institution of Engineers (India): Series B, 93(3), 163–172.

    Article  Google Scholar 

  2. Moradmand, H., Setayeshi, S., Karimian, A. R., Sirous, M., & Akbari, M. E. (2012). Comparing the performance of image enhancement methods to detect microcalcification clusters in digital mammography. Iranian Journal of Cancer Prevention, 5(2), 61–68.

    Google Scholar 

  3. Ganesan, K., Acharya, R. U., Chua, C. K., Min, L. C., Mathew, B., & Thomas, A. K. (2013). Decision support system for breast cancer detection using mammograms. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 227(7), 721–732.

    Article  Google Scholar 

  4. Quintanilla-Dominguez, J., Ojeda-Magaña, B., Cortina-Januchs, M. G., Ruelas, R., Vega-Corona, A., & Andina, D. (2011). Image segmentation by fuzzy and possibilistic clustering algorithms for the identification of microcalcifications. Scientia Iranica, 18(3), 580–589.

    Article  MATH  Google Scholar 

  5. Gonzalez, R. C., & Woods, R. E. (2009). Digital image processing. Delhi: Pearson Education India.

    Google Scholar 

  6. Caselles, V., Lisani, J. L., Morel, J. M., & Sapiro, G. (1999). Shape preserving local histogram modification. IEEE Transactions on Image Processing, 8(2), 220–230.

    Article  Google Scholar 

  7. Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), 889–896.

    Article  Google Scholar 

  8. Sund, T., & Olsen, J. B. (2006). Detection of simulated microcalcifications in fixed mammary tissue: An ROC study of the effect of local versus global histogram equalization. Acta Radiologica, 47(7), 650–654.

    Article  Google Scholar 

  9. Sundaram, M., Ramar, K., Arumugam, N., & Prabin, G. (2011). Histogram modified local contrast enhancement for mammogram images. Applied Soft Computing, 11(8), 5809–5816.

    Article  Google Scholar 

  10. Pizer, S. M., Amburn, E. O. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., et al. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics and Image Processing, 39(3), 355–368.

    Article  Google Scholar 

  11. Pisano, E. D., Zong, S., DeLuca, R. M., Johnston, E., Muller, K., Braeuning, M. P., et al. (1998). Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193–200.

    Article  Google Scholar 

  12. Sondele, S., & Saini, I. (2013). Classification of mammograms using bidimensional empirical mode decomposition based features and artificial neural network. International Journal of Bioscience and Biotechnology, 5(6), 171–179.

    Google Scholar 

  13. Toet, A., & Wu, T. (2014). Efficient contrast enhancement through log-power histogram modification. Journal of Electronic Imaging, 23(6), 063017. doi:10.1117/1.JEI.23.6.063017.

    Article  Google Scholar 

  14. Rangayyan, R. M., Shen, L., Shen, Y., Desautels, J. E. L., Bryant, H., Terry, T. J., et al. (1997). Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Transactions on Information Technology in Biomedicine, 1(3), 161–170.

    Article  Google Scholar 

  15. Guis, V. H., Adel, M., Rasigni, M., Rasigni, G., Seradour, B., & Heid, P. (2003). Adaptive neighborhood contrast enhancement in mammographic phantom images. Optical Engineering, 42(2), 357–366.

    Article  Google Scholar 

  16. Petrick, N., Chan, H. P., Sahiner, B., & Wei, D. (1996). An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection. IEEE Transactions on Medical Imaging, 15(1), 59–67.

    Article  Google Scholar 

  17. Laine, A., Fan, J., & Yang, W. (1995). Wavelets for contrast enhancement of digital mammography. IEEE Engineering in Medicine and Biology Magazine, 14(5), 536–550.

    Article  Google Scholar 

  18. Sakellaropoulos, P., Costaridou, L., & Panayiotakis, G. (2003). A wavelet-based spatially adaptive method for mammographic contrast enhancement. Physics in Medicine and Biology, 48(6), 787–803.

    Article  Google Scholar 

  19. Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., & Caselli, F. (2008). Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Transactions on Instrumentation and Measurement, 57(7), 1422–1430.

    Article  Google Scholar 

  20. Hussain, M. (2014). Mammogram enhancement using lifting dyadic wavelet transform and normalized Tsallis entropy. Journal of Computer Science and Technology, 29(6), 1048–1057.

    Article  Google Scholar 

  21. Lu, Z., Jiang, T., Hu, G., & Wang, X. (2007). Contourlet based mammographic image enhancement. In Fifth international conference on photonics and imaging in biology and medicine, Wuhan, China (pp. 65340M-1–65340M-8).

  22. Muñoz, J. M. M., Domínguez, H. D. J. O., Villegas, O. O. V., Sánchez, V. G. C., & Maynez, L. O. (2009). The nonsubsampled contourlet transform for enhancement of microcalcifications in digital mammograms. In 8th Mexican international conference on artificial intelligence, Guanajuato, México, November 9–13, 2009 (pp. 292–302). Berlin: Springer.

  23. Dylan, M. H. O. M., & Tairi, H. (2012). Multifocus image fusion scheme using a combination of nonsubsampled contourlet transform and an image decomposition model. Journal of Theoretical and Applied Information Technology, 38(2), 136–144.

    Google Scholar 

  24. Bhateja, V., & Devi, S. (2010, December). Mammographic image enhancement using double sigmoid transformation function. In International conference on computer applications (ICCA-2010), Pondicherry (India), December 24–27, 2010 (pp. 259–264).

  25. Arriaga-Garcia, E. F., Sanchez-Yanez, R. E., & Garcia-Hernandez, M. G. (2014). Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In International conference on electronics, communications and computers, Mexico, 26–28 February 2014 (pp. 28–34).

  26. Cheng, H. D., & Xu, H. (2002). A novel fuzzy logic approach to mammogram contrast enhancement. Information Sciences, 148(1), 167–184.

    Article  MATH  Google Scholar 

  27. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.

    Article  Google Scholar 

  28. Magudeeswaran, V., & Ravichandran, C. G. (2013). Fuzzy logic-based histogram equalization for image contrast enhancement. Mathematical Problems in Engineering, 2013, 1–10 (Article ID 891864).

  29. Kothapalli, S. R., Yelleswarapu, C. S., Naraharisetty, S. G., Wu, P., & Rao, D. V. G. L. N. (2005). Spectral phase based medical image processing. Academic Radiology, 12(6), 708–721.

    Article  Google Scholar 

  30. Yoon, J. H., & Ro, Y. M. (2002). Enhancement of the contrast in mammographic images using the homomorphic filter method. IEICE Transactions on Information and Systems, 85(1), 298–303.

    Google Scholar 

  31. Gorgel, P., Sertbas, A., & Ucan, O. N. (2010). A wavelet-based mammographic image denoising and enhancement with homomorphic filtering. Journal of Medical Systems, 34(6), 993–1002.

    Article  Google Scholar 

  32. Panetta, K., Zhou, Y., Agaian, S., & Jia, H. (2011). Nonlinear unsharp masking for mammogram enhancement. IEEE Transactions on Information Technology in Biomedicine, 15(6), 918–928.

    Article  Google Scholar 

  33. Wirth, M., Fraschini, M., & Lyon, J. (2004). Contrast enhancement of micro calcifications in mammograms using morphological enhancement and non-flat structuring elements. In 17th IEEE symposium on computer-based medical systems, CBMS 2004, Bethesda, MD, USA, June 24–25, 2004 (pp. 134–139).

  34. Bhateja, V., & Devi, S. (2011, April). A novel framework for edge detection of microcalcifications using a non-linear enhancement operator and morphological filter. In 3rd International conference on electronics computer technology (ICECT), Kanyakumari, India, April 8–10, 2011 (Vol. 5, pp. 419–424).

  35. Sridhar, B., Reddy, K. V. V. S., & Prasad, A. M. (2015). Automatic detection of micro calcifications in a small field digital mammography using morphological adaptive bilateral filter and radon transform based methods. Advanced Science, Engineering and Medicine, 6(12), 1290–1298.

    Article  Google Scholar 

  36. Kurt, B., Nabiyev, V. V., & Turhan, K. (2015). A novel algorithm for segmentation of suspicious microcalcification regions on mammograms. In Bioinformatics and biomedical engineering. Lecture notes in computer science (Vol. 9043, pp. 222–230). Cham: Springer.

  37. Rejani, Y., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique. International Journal on Computer Science and Engineering, 1(3), 127–130.

    Google Scholar 

  38. Kumar, N. H., Amutha, S., & Babu, D. R. (2012). Enhancement of mammographic images using morphology and wavelet transform. International Journal of Computer Technology and Applications, 3(1), 192–198.

    Google Scholar 

  39. Avachat, A. V. (2012). Wavelet based contrast limited histogram equalization for contrast enhancement of digital mammography. IEEE Transaction on Information Technology Biomedicine, 17(6), 950–961.

    Google Scholar 

  40. Elsawy, N., Sayed, M. S., Farag, F., & Gouhar, G. K. (2012). Band-limited histogram equalization for mammograms contrast enhancement. In IEEE Cairo international conference in biomedical engineering (CIBEC) (pp. 154–157). Cairo International.

  41. Zhang, X., Homma, N., Goto, S., Kawasumi, Y., Ishibashi, T., Abe, M., et al. (2013). A hybrid image filtering method for computer-aided detection of microcalcification clusters in mammograms. Journal of Medical Engineering, 2013, 1–8.

    Google Scholar 

  42. Ding, Y., Dai, H., & Zhang, H. (2014). Automatic detection of microcalcifications with multi-fractal spectrum. Biomedical Materials and Engineering, 24(6), 3049–3054.

    Google Scholar 

  43. Wani, I. U. I., Hanumantharaju, M. C., & Gopalkrishna, M. T. (2014). Contrast enhancement of mammograms images based on hybrid processing. In Proceedings of the 3rd international conference on frontiers of intelligent computing: Theory and applications (FICTA) 2014 (pp. 545–552). Springer.

  44. Mohamed, H., Mabrouk, M. S., & Sharawy, A. (2014). Computer aided detection system for micro calcifications in digital mammograms. Computer Methods and Programs in Biomedicine, 116(3), 226–235.

    Article  Google Scholar 

  45. Benjamin, J. A., Ramachandran, B., & Muthukrishnan, P. (2015). Intelligent detection and classification of micro-calcification in compressed mammogram image. Image Analysis and Stereology, 34(3), 183–198.

    Article  MathSciNet  MATH  Google Scholar 

  46. Taifi, K., Ahdid, R., Fakir, M., & Safi, S. (2015). A hybrid the nonsubsampled contourlet transform and homomorphic filtering for enhancing mammograms. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 539–545.

    Google Scholar 

  47. DeOliveira, J. E., Deserno, T. M., & Araújo, A. D. A. (2008, October). Breast lesions classification applied to a reference database. In 2nd International conference, October 29–31, 2008 (pp. 29–31). Sfax: E-Medical Systems.

  48. Bai, X., & Zhou, F. (2010). Multi scale top-hat transform based algorithm for image enhancement. In 10th International conference on signal processing, ICSP2010, Beijing, China, October 24–28, 2010 (pp. 797–800).

  49. Singh, S., & Bovis, K. (2005). An evaluation of contrast enhancement techniques for mammographic breast masses. IEEE Transactions on Information Technology in Biomedicine, 9(1), 109–119.

    Article  Google Scholar 

  50. Vanzo, A., Ramponi, G., & Sicaranza, G. L. (1994, October). An image enhancement technique using polynomial filters. In International conference on image processing, Singapore, October 24–27, 1994 (pp. 477–481).

  51. Panetta, K., Samani, A., & Agaian, S. (2014). Choosing the optimal spatial domain measure of enhancement for mammogram images. Journal of Biomedical Imaging, 2014, 1–8 (Article ID 937849).

  52. Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12), 3350–3364.

    Article  MathSciNet  MATH  Google Scholar 

  53. Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212.

    Article  Google Scholar 

  54. Stojić, T., & Reljin, B. (2010). Enhancement of microcalcifications in digitized mammograms: Multifractal and mathematical morphology approach. FME Transactions, 38(1), 1–9.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Sunil Mittal, Chief Radiologist, Mayyo Imaging and Diagnostic Center, Ludhiana for many helpful comments and assistance provided in evaluation of the work. IRMA version of DDSM LJPEG dataset has been used in this research. Our thanks to Dr. Thomas Deserno, Department of Medical Informatics, Aachen University of Technology, Aachen, North Rhine-Westphalia, Germany, for providing the IRMA (Image Retrieval in Medical Applications) version of DDSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpreet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kaur, M. An Approach for Enhancement of Microcalcifications in Mammograms. J. Med. Biol. Eng. 37, 567–579 (2017). https://doi.org/10.1007/s40846-017-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0276-7

Keywords

Navigation