Abstract
The current study introduces a novel parameter called maximum stress parameter (MSP) which supersedes the conventional parameter known as stress transfer parameter (STP). It also incorporates the bone remodeling algorithm into the finite element analysis. The results from MSP can be approved by those of STP; however, MSP is preferable due to its benefits, which is discussed in this study. The current study simulates a 48 months healing process and investigates the effect of screw parameters using a two-dimensional finite element model in the presence of bone remodeling process. Lower MSP values demonstrate a more homogeneous stress distribution between the screw and bone, which results in less stress shielding. However, the reciprocal of MSP, shown as RMSP is defined in order to enable the comparison between MSP and STP. The results of current study demonstrate that increasing the number of threads and outer diameter, and decreasing pitch and Young’s modulus of screw improve the performance of screw and reduce the possibility of screw loosening. The results also show that MSP is a promising parameter, which can supersede STP in future studies, and increase the reliability of results.
Similar content being viewed by others
References
Ragnarsson, J. I., & Karrholm, J. (1992). Factors influencing postoperative movement in displaced femoral neck fractures: Evaluation by conventional radiography and stereoradiography. Journal of Orthopaedic Trauma, 6, 152–158.
Kwon, B. K., Goertzen, D. J., O’Brien, P. J., Broekhuyse, H. M., & Oxland, T. R. (2002). Biomechanical evaluation of proximal humeral fracture fixation supplemented with calcium phosphate cement. Journal of Bone and Joint Surgery America, 84, 951–961.
Gaines, J. R. W. (2000). The use of pedicle–screw internal fixation for the operative treatment of spinal. Journal of Bone and Joint Surgery (American), 82, 1458–1476.
Samsami, S., Saberi, S., Sadighi, S., & Rouhi, G. (2015). A comparison of three different fixation methods for the femoral neck fracture in young adults: Experimental and numerical investigations. Journal of Medical and Biological Engineering, 35(5), 566–579.
Haase, K., & Rouhi, G. (2013). Prediction of stress shielding around an orthopedic screw: Using stress and strain energy density as mechanical stimuli. Computers in Biology and Medicine, 43, 1748–1757.
Skinner, P. W., & Powles, D. (1986). Compression screw fixation for displaced subcapital fracture of the femur. Success or failure? Journal of Bone and Joint Surgery, 68, 78–82.
Hyldahl, C., Pearson, S., Tepic, S., & Perren, S. M. (1991). Induction and prevention of pin loosening in external fixation: an in vivo study on sheep tibiae. Journal of Orthopaedic Trauma, 5, 485–492.
Gefen, A. (2002). Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Medical & Biological Engineering & Computing, 40, 311–322.
Rouhi, G., Tahani, M., Haghighi, B., & Herzog, W. (2015). Prediction of stress shielding around orthopedic screws: A time-dependent bone remodeling analysis using a finite element approach. Journal of Medical and Biological Engineering., 35, 545–554.
Ashjaee, N., Hosseinitabatabaei, S., & Tahani, M. Design optimization of an orthopedic screw based on stress stimulus using Taguchi method and finite element analysis. In 2nd National Conference on Applied Researches in Electrical, Mechanical and Mechatronics Engineering, Tehran, 2015.
McLean, F. C. (1958). The ultrastructure and function of bone. Science, 127, 451–456.
Steele, D. G., & Bramblett, C. A. (1988). Anatomy and biology of the human skeleton. Texas: Texas A&M University Press.
Rouhi, G. (2012). Biomechanics of osteoporosis: The importance of bone resorption and remodeling processes. In Y. Dionyssiotis (Ed.), Osteoporosis (pp. 59–78). INTECH Open Access Publisher.
Uhthoff, H. K., & Jaworski, Z. F. G. (1978). Bone loss in response to long-term immobilization. Journal of Bone and Joint Surgery, 60, 420–429.
Van Lenthe, G. H., de Waal Malefijt, M. C., & Huiskes, R. (1997). Stress shielding after total knee replacement may cause bone resorption in the distal femur. Journal of Bone and Joint Surgery, 79B, 117–122.
Okuyama, K., Abe, E., Suzuki, T., Tamura, Y., Chiba, M., & Sato, K. (2000). Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine, 25, 858–864.
Uhthoff, H. K. (1975). Bone reaction around screw threads. Clinical Orthopaedics and Related Research, 111, 305.
Rho, J. Y., Ashman, R. B., & Turner, C. H. (1993). Youngs modulus of trabecular and cortical bone material—ultrasonic and microtensile measurements. Journal of Biomechanics, 26, 111.
Perren, S. M., Huggler, A., Russenberger, M., Allgöwer, M., Mathys, R., Schenk, R., et al. (1969). The reaction of cortical bone to compression. Acta Orthopaedica Scandinavica. Supplementum Journal, 125, 19–29.
Wolff, J. (1892). The law of bone remodeling. Berlin: Springer.
Lowery, G. L., & McDonough, R. F. (1998). The significance of hardware failure in anterior cervical plate fixation. Patients with 2- to 7-year follow-up. Spine, 23, 181–187.
Ang, K. C., De Das, S., Goh, J. C., Low, S. L., & Bose, K. (1997). Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. Journal of Bone and Joint Surgery, 79, 675–679.
Schuller-Götzburg, P., Krenkel, C., Reiter, T. J., & Plenk, J. H. (1999). 2D-finite element analyses and histomorphology of lag screws with and without a biconcave washer. Journal of Biomechanics, 32, 511–520.
Zhang, Q. H., Tan, S. H., & Chou, S. M. (2004). Investigation of fixation screw pull-out strength on human spine. Journal of Biomechanics, 37, 479–485.
Bozkaya, D., Muftu, S., & Muftu, A. (2004). Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. Journal of Prosthetic Dentistry, 92, 523–530.
Lee, W. C. C., Doocey, J. M., Branemark, R., Adam, C. J., Evans, J. H., Pearcy, M. J., et al. (2008). FE stress analysis of the interface between the bone and an osseointegrated implant for amputees- Implication to refine the rehabilitation program. Clinical Biomechanics, 23, 1243–1250.
Müller, R. (2005). Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporosis International, 16, 25–35.
Vahdati, A., & Rouhi, G. (2009). A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mechanics Research Communications, 36, 284–293.
Brown, T. D., Pedersen, D. R., Gray, M. L., Brand, R. A., & Rubin, C. T. (1990). Toward an identification of mechanical parameters initiating periosteal remodeling-a combined experimental and analytic approach. Journal of Biomechanics, 23, 893–905.
Huiskes, R., Ruimerman, R., Van Lenthe, G. H., & Janssen, J. D. (2000). Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 405, 704–706.
Rouhi, G., Epstein, M., Sudak, L., & Herzog, W. (2007). Modeling bone resorption using mixture theory with chemical reactions. Journal of Mechanics of Materials and Structures, 2, 1141–1156.
Van Oers, R. F., Ruimerman, R., Tanck, E., Hilbers, P. A., & Huiskes, R. (2008). A unified theory for osteonal and hemi-osteonal remodeling. Bone, 42, 250–259.
Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24, 337–347.
Ruimerman, R., Hilbers, P., van Rietbergen, B., & Huiskes, R. (2004). A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics, 38, 931–941.
Han, Z. H., Palnitkar, S., Sudhaker Rao, D., Nelson, D., & Parfitt, A. M. (1997). Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: Implications for mechanisms of bone loss. Journal of Bone and Mineral Research, 12, 498–508.
MacLeod, A. R., Pankaj, P., Hamish, A., & Simpson, R. W. (2012). Does screw-bone interface modelling matter in finite element analyses? Journal of Biomechanics, 45, 1712–1716.
Esmail, E., Hassan, N., Kadah, Y. A three-dimensional finite element analysis of the osseointegration progression in the human mandible. Proc. SPIE 7625, Medical imaging 2010: Visualization, image-guided procedures, and modeling, San Diego, California, USA, 2010
Turner, C. H. (1988). Three rules for bone adaptation to mechanical stimuli. Bone, 23, 399–407.
Eraslan, O., & Inan, O. (2010). The effect of thread design on stress distribution in a solid screw implant: A 3D finite element analysis. Clinical Oral Investigations, 14, 411–416.
DeCoster, T. A., Heetderks, D. B., Downey, D. J., Ferries, J. S., & Jones, W. (1990). Optimizing bone screw pullout force. Journal of Orthopaedic Trauma, 4, 169–174.
Schatzker, J., Sanderson, R., & Murnaghan, J. P. (1975). The holding power of orthopedic screws in vivo. Clinical Orthopaedics and Related Research, 108, 115–126.
Chun, H. J., Cheong, S. Y., Han, J. H., Heo, S. J., Chung, J. P., Rhyu, I. C., et al. (2010). Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation, 29, 565–574.
Brinley, C. L. (2008). The effects of pitch and fluting on insertion torque and pullout strength of miniscrew implants. Saint Louis University.
Shah, A. H. (2011). Effect of mini-screw characteristics (length and outer diameter) and bone properties (cortical thickness and density) on insertion torque and pullout strength. Saint Louis University.
Carano, A., Lonardo, P., Velo, S., & Incorvati, C. (2005). Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Progress in Orthodontics, 6, 82–97.
Hearn, T. C., Schatzker, J., & Wolfson, N. (1993). Extraction strength of cannuated cancellous bone screws. Journal of Orthopaedic Trauma, 7, 138–141.
Hughes, A. N., & Jordan, B. A. (1972). The mechanical properties of surgical bone screws and some aspects of insertion practice. Injury, 4, 25–38.
Staigera, M. P., Pietaka, A. M., Huadmaia, J., & Diasb, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734.
Farraro, K. F., Kim, K. E., Woo, S. L., Flowers, J. R., & McCullough, M. B. (2014). Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of Biomechanics, 47, 1979–1986.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hosseinitabatabaei, S., Ashjaee, N. & Tahani, M. Introduction of Maximum Stress Parameter for the Evaluation of Stress Shielding Around Orthopedic Screws in the Presence of Bone Remodeling Process. J. Med. Biol. Eng. 37, 703–716 (2017). https://doi.org/10.1007/s40846-017-0267-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40846-017-0267-8