Skip to main content

Advertisement

Log in

Introduction of Maximum Stress Parameter for the Evaluation of Stress Shielding Around Orthopedic Screws in the Presence of Bone Remodeling Process

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The current study introduces a novel parameter called maximum stress parameter (MSP) which supersedes the conventional parameter known as stress transfer parameter (STP). It also incorporates the bone remodeling algorithm into the finite element analysis. The results from MSP can be approved by those of STP; however, MSP is preferable due to its benefits, which is discussed in this study. The current study simulates a 48 months healing process and investigates the effect of screw parameters using a two-dimensional finite element model in the presence of bone remodeling process. Lower MSP values demonstrate a more homogeneous stress distribution between the screw and bone, which results in less stress shielding. However, the reciprocal of MSP, shown as RMSP is defined in order to enable the comparison between MSP and STP. The results of current study demonstrate that increasing the number of threads and outer diameter, and decreasing pitch and Young’s modulus of screw improve the performance of screw and reduce the possibility of screw loosening. The results also show that MSP is a promising parameter, which can supersede STP in future studies, and increase the reliability of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ragnarsson, J. I., & Karrholm, J. (1992). Factors influencing postoperative movement in displaced femoral neck fractures: Evaluation by conventional radiography and stereoradiography. Journal of Orthopaedic Trauma, 6, 152–158.

    Article  Google Scholar 

  2. Kwon, B. K., Goertzen, D. J., O’Brien, P. J., Broekhuyse, H. M., & Oxland, T. R. (2002). Biomechanical evaluation of proximal humeral fracture fixation supplemented with calcium phosphate cement. Journal of Bone and Joint Surgery America, 84, 951–961.

    Article  Google Scholar 

  3. Gaines, J. R. W. (2000). The use of pedicle–screw internal fixation for the operative treatment of spinal. Journal of Bone and Joint Surgery (American), 82, 1458–1476.

    Article  Google Scholar 

  4. Samsami, S., Saberi, S., Sadighi, S., & Rouhi, G. (2015). A comparison of three different fixation methods for the femoral neck fracture in young adults: Experimental and numerical investigations. Journal of Medical and Biological Engineering, 35(5), 566–579.

    Article  Google Scholar 

  5. Haase, K., & Rouhi, G. (2013). Prediction of stress shielding around an orthopedic screw: Using stress and strain energy density as mechanical stimuli. Computers in Biology and Medicine, 43, 1748–1757.

    Article  Google Scholar 

  6. Skinner, P. W., & Powles, D. (1986). Compression screw fixation for displaced subcapital fracture of the femur. Success or failure? Journal of Bone and Joint Surgery, 68, 78–82.

    Google Scholar 

  7. Hyldahl, C., Pearson, S., Tepic, S., & Perren, S. M. (1991). Induction and prevention of pin loosening in external fixation: an in vivo study on sheep tibiae. Journal of Orthopaedic Trauma, 5, 485–492.

    Article  Google Scholar 

  8. Gefen, A. (2002). Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Medical & Biological Engineering & Computing, 40, 311–322.

    Article  Google Scholar 

  9. Rouhi, G., Tahani, M., Haghighi, B., & Herzog, W. (2015). Prediction of stress shielding around orthopedic screws: A time-dependent bone remodeling analysis using a finite element approach. Journal of Medical and Biological Engineering., 35, 545–554.

    Article  Google Scholar 

  10. Ashjaee, N., Hosseinitabatabaei, S., & Tahani, M. Design optimization of an orthopedic screw based on stress stimulus using Taguchi method and finite element analysis. In 2nd National Conference on Applied Researches in Electrical, Mechanical and Mechatronics Engineering, Tehran, 2015.

  11. McLean, F. C. (1958). The ultrastructure and function of bone. Science, 127, 451–456.

    Article  Google Scholar 

  12. Steele, D. G., & Bramblett, C. A. (1988). Anatomy and biology of the human skeleton. Texas: Texas A&M University Press.

    Google Scholar 

  13. Rouhi, G. (2012). Biomechanics of osteoporosis: The importance of bone resorption and remodeling processes. In Y. Dionyssiotis (Ed.), Osteoporosis (pp. 59–78). INTECH Open Access Publisher.

  14. Uhthoff, H. K., & Jaworski, Z. F. G. (1978). Bone loss in response to long-term immobilization. Journal of Bone and Joint Surgery, 60, 420–429.

    Google Scholar 

  15. Van Lenthe, G. H., de Waal Malefijt, M. C., & Huiskes, R. (1997). Stress shielding after total knee replacement may cause bone resorption in the distal femur. Journal of Bone and Joint Surgery, 79B, 117–122.

    Article  Google Scholar 

  16. Okuyama, K., Abe, E., Suzuki, T., Tamura, Y., Chiba, M., & Sato, K. (2000). Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine, 25, 858–864.

    Article  Google Scholar 

  17. Uhthoff, H. K. (1975). Bone reaction around screw threads. Clinical Orthopaedics and Related Research, 111, 305.

    Google Scholar 

  18. Rho, J. Y., Ashman, R. B., & Turner, C. H. (1993). Youngs modulus of trabecular and cortical bone material—ultrasonic and microtensile measurements. Journal of Biomechanics, 26, 111.

    Article  Google Scholar 

  19. Perren, S. M., Huggler, A., Russenberger, M., Allgöwer, M., Mathys, R., Schenk, R., et al. (1969). The reaction of cortical bone to compression. Acta Orthopaedica Scandinavica. Supplementum Journal, 125, 19–29.

    Google Scholar 

  20. Wolff, J. (1892). The law of bone remodeling. Berlin: Springer.

    Google Scholar 

  21. Lowery, G. L., & McDonough, R. F. (1998). The significance of hardware failure in anterior cervical plate fixation. Patients with 2- to 7-year follow-up. Spine, 23, 181–187.

    Article  Google Scholar 

  22. Ang, K. C., De Das, S., Goh, J. C., Low, S. L., & Bose, K. (1997). Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. Journal of Bone and Joint Surgery, 79, 675–679.

    Article  Google Scholar 

  23. Schuller-Götzburg, P., Krenkel, C., Reiter, T. J., & Plenk, J. H. (1999). 2D-finite element analyses and histomorphology of lag screws with and without a biconcave washer. Journal of Biomechanics, 32, 511–520.

    Article  Google Scholar 

  24. Zhang, Q. H., Tan, S. H., & Chou, S. M. (2004). Investigation of fixation screw pull-out strength on human spine. Journal of Biomechanics, 37, 479–485.

    Article  Google Scholar 

  25. Bozkaya, D., Muftu, S., & Muftu, A. (2004). Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. Journal of Prosthetic Dentistry, 92, 523–530.

    Article  Google Scholar 

  26. Lee, W. C. C., Doocey, J. M., Branemark, R., Adam, C. J., Evans, J. H., Pearcy, M. J., et al. (2008). FE stress analysis of the interface between the bone and an osseointegrated implant for amputees- Implication to refine the rehabilitation program. Clinical Biomechanics, 23, 1243–1250.

    Article  Google Scholar 

  27. Müller, R. (2005). Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporosis International, 16, 25–35.

    Article  Google Scholar 

  28. Vahdati, A., & Rouhi, G. (2009). A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mechanics Research Communications, 36, 284–293.

    Article  MATH  Google Scholar 

  29. Brown, T. D., Pedersen, D. R., Gray, M. L., Brand, R. A., & Rubin, C. T. (1990). Toward an identification of mechanical parameters initiating periosteal remodeling-a combined experimental and analytic approach. Journal of Biomechanics, 23, 893–905.

    Article  Google Scholar 

  30. Huiskes, R., Ruimerman, R., Van Lenthe, G. H., & Janssen, J. D. (2000). Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 405, 704–706.

    Article  Google Scholar 

  31. Rouhi, G., Epstein, M., Sudak, L., & Herzog, W. (2007). Modeling bone resorption using mixture theory with chemical reactions. Journal of Mechanics of Materials and Structures, 2, 1141–1156.

    Article  Google Scholar 

  32. Van Oers, R. F., Ruimerman, R., Tanck, E., Hilbers, P. A., & Huiskes, R. (2008). A unified theory for osteonal and hemi-osteonal remodeling. Bone, 42, 250–259.

    Article  Google Scholar 

  33. Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24, 337–347.

    Article  Google Scholar 

  34. Ruimerman, R., Hilbers, P., van Rietbergen, B., & Huiskes, R. (2004). A theoretical framework for strain-related trabecular bone maintenance and adaptation. Journal of Biomechanics, 38, 931–941.

    Article  Google Scholar 

  35. Han, Z. H., Palnitkar, S., Sudhaker Rao, D., Nelson, D., & Parfitt, A. M. (1997). Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: Implications for mechanisms of bone loss. Journal of Bone and Mineral Research, 12, 498–508.

    Article  Google Scholar 

  36. MacLeod, A. R., Pankaj, P., Hamish, A., & Simpson, R. W. (2012). Does screw-bone interface modelling matter in finite element analyses? Journal of Biomechanics, 45, 1712–1716.

    Article  Google Scholar 

  37. Esmail, E., Hassan, N., Kadah, Y. A three-dimensional finite element analysis of the osseointegration progression in the human mandible. Proc. SPIE 7625, Medical imaging 2010: Visualization, image-guided procedures, and modeling, San Diego, California, USA, 2010

  38. Turner, C. H. (1988). Three rules for bone adaptation to mechanical stimuli. Bone, 23, 399–407.

    Article  Google Scholar 

  39. Eraslan, O., & Inan, O. (2010). The effect of thread design on stress distribution in a solid screw implant: A 3D finite element analysis. Clinical Oral Investigations, 14, 411–416.

    Article  Google Scholar 

  40. DeCoster, T. A., Heetderks, D. B., Downey, D. J., Ferries, J. S., & Jones, W. (1990). Optimizing bone screw pullout force. Journal of Orthopaedic Trauma, 4, 169–174.

    Article  Google Scholar 

  41. Schatzker, J., Sanderson, R., & Murnaghan, J. P. (1975). The holding power of orthopedic screws in vivo. Clinical Orthopaedics and Related Research, 108, 115–126.

    Article  Google Scholar 

  42. Chun, H. J., Cheong, S. Y., Han, J. H., Heo, S. J., Chung, J. P., Rhyu, I. C., et al. (2010). Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation, 29, 565–574.

    Article  Google Scholar 

  43. Brinley, C. L. (2008). The effects of pitch and fluting on insertion torque and pullout strength of miniscrew implants. Saint Louis University.

  44. Shah, A. H. (2011). Effect of mini-screw characteristics (length and outer diameter) and bone properties (cortical thickness and density) on insertion torque and pullout strength. Saint Louis University.

  45. Carano, A., Lonardo, P., Velo, S., & Incorvati, C. (2005). Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Progress in Orthodontics, 6, 82–97.

    Google Scholar 

  46. Hearn, T. C., Schatzker, J., & Wolfson, N. (1993). Extraction strength of cannuated cancellous bone screws. Journal of Orthopaedic Trauma, 7, 138–141.

    Article  Google Scholar 

  47. Hughes, A. N., & Jordan, B. A. (1972). The mechanical properties of surgical bone screws and some aspects of insertion practice. Injury, 4, 25–38.

    Article  Google Scholar 

  48. Staigera, M. P., Pietaka, A. M., Huadmaia, J., & Diasb, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728–1734.

    Article  Google Scholar 

  49. Farraro, K. F., Kim, K. E., Woo, S. L., Flowers, J. R., & McCullough, M. B. (2014). Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. Journal of Biomechanics, 47, 1979–1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Tahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinitabatabaei, S., Ashjaee, N. & Tahani, M. Introduction of Maximum Stress Parameter for the Evaluation of Stress Shielding Around Orthopedic Screws in the Presence of Bone Remodeling Process. J. Med. Biol. Eng. 37, 703–716 (2017). https://doi.org/10.1007/s40846-017-0267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0267-8

Keywords

Navigation