Skip to main content
Log in

Approximate Artery Elasticity Using Linear Springs

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The mechanical properties of arteries play an essential role in the study of the circulatory system dynamics, which has been becoming increasingly important in the treatment of cardiovascular diseases. Similarly, when building virtual reality simulators, it is crucial to have a tissue model able to respond in real time. The aim of this work is to linearize an artery model to calculate the stiffness of springs. Arteries with three tissue layers (Intima, Media, and Adventitia) are considered and, starting from the stretch-energy density, some of the elasticity tensor components are calculated. The artery is discretized by a two dimensional mesh where the nodes are connected by three kinds of linear springs (one normal and two angular ones). The model linearizes and homogenizes the material response, but it still contemplates the geometric nonlinearity. Comparisons showed a good match with a nonlinear model and with a standard two-dimensional finite element model, when the artery undergoes a stretch in the circumferential and axial directions. The agreement is also good if the arterial tissue undergoes bending. Finally, the Intima layer shows the biggest deviation from linearity when there is a large deformation in the axial direction. If the arterial stretch varies by 1% or less, then the agreement between the linear and nonlinear models is trustworthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pereira, T., Correia, C., & Cardoso, J. (2015). Novel methods for pulse wave velocity measurement. Journal of Medical and Biological Engineering, 35, 555–565.

    Article  Google Scholar 

  2. Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. European Journal of Mechanics, A/Solids, 21, 441–463.

    Article  Google Scholar 

  3. Alderliesten, T., Konings, M. K., & Niessen, W. J. (2007). Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE Transactions on Biomedical Engineering, 54, 29–38.

    Article  Google Scholar 

  4. Wang, Y., Guo, S., Tamiya, T., Hirata, H., & Ishihara, H. (2014). A blood vessel deformation model based virtual-reality simulator for the robotic catheter operating system. Neuroscience and Biomedical Engineering, 2, 126–131.

    Article  Google Scholar 

  5. Baier, P. A., Baier-Saip, J. A., Schilling, K., & Oliveira, J. C. (2016). Simulator for minimally invasive vascular interventions: Hardware and software. Presence, 25, 108–128.

    Article  Google Scholar 

  6. Wells, P. N. T., & Liang, H. D. (2011). Medical ultrasound: Imaging of soft tissue strain and elasticity. Journal of the Royal Society Interface, 8, 1521–1549.

    Article  Google Scholar 

  7. Li, W. (2016). Damage models for soft tissues: A survey. Journal of Medical and Biological Engineering, 36, 285–307.

    Article  Google Scholar 

  8. Pierce, D. M., Fastl, T. E., Rodriguez-Vila, B., Verbrugghe, P., Fourneau, I., Maleux, G., et al. (2015). A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Journal of the Mechanical Behavior of Biomedical Materials, 47, 147–164.

    Article  Google Scholar 

  9. Vito, R. P., & Dixon, S. A. (2003). Blood vessel constitutive models: 1995–2002. Annual Review of Biomedical Engineering, 5, 413–439.

    Article  Google Scholar 

  10. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues. New York: Springer.

  11. Humphrey, J. D. (2002). Cardiovascular solid mechanics: Cells, tissues, and organs. New York: Springer.

    Article  Google Scholar 

  12. Sokolis, D. P. (2008). Passive mechanical properties and constitutive modeling of blood vessels in relation to microstructure. Medical and Biological Engineering and Computing, 46, 1187–1199.

    Article  Google Scholar 

  13. Driessen, N. J., Bouten, C. V., & Baaijens, F. P. (2005). A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. Biomechanical Engineering, 127, 494–503.

    Article  Google Scholar 

  14. Carboni, M., Desch, G. W., & Weizsacker, H. W. (2007). Passive mechanical properties of porcine left circumflex artery and its mathematical description. Medical Engineering and Physics, 29, 8–16.

    Article  Google Scholar 

  15. Holzapfel, G. A., Niestrawska, J. A., Ogdeon, R. W., Reinisch, A. J., & Schrief, A. J. (2015). Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of the Royal Society Interface, 12, 20150188.

    Article  Google Scholar 

  16. Garcia, M., Mendoza, C., Pastor, L., & Rodriguez, A. (2006). Optimized linear FEM for modeling deformable objects. Computer Animation and Virtual Worlds, 17, 393–402.

    Article  Google Scholar 

  17. Misra, S., Ramesh, K. T., & Okamura, A. M. (2008). Modeling of tool-tissue interactions for computer-based surgical simulation: A literature review. Presence (Camb), 17, 463.

    Article  Google Scholar 

  18. Bro-Nielsen, M. (1998). Finite element modeling in surgery simulation. Proceedings of the IEEE, 86, 490–503.

    Article  Google Scholar 

  19. Zhang, D., Wang, T., Liu, D., & Lin, G. (2010). Vascular deformation for vascular interventional surgery simulation. International Journal of Medical Robotics and Computer Assisted Surgery, 6, 170–177.

    Article  Google Scholar 

  20. Johnson, E., Zhang, Y., & Shimada, K. (2011). Estimating an equivalent wall-thickness of a cerebral aneurysm through surface parameterization and a non-linear spring system. International Journal for Numerical Methods in Biomedical Engineering, 27, 1054–1072.

    Article  Google Scholar 

  21. Holzapfel, G. A., Sommer, G., Gasser, C. T., & Regitnig, P. (2005). Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology Heart and Circulatory Physiology, 289, H2048–H2058.

    Article  Google Scholar 

  22. Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61, 1–48.

    Article  MathSciNet  Google Scholar 

  23. Ogden, R. W. (1997). Non-linear elastic deformations. New York: Dover Publications.

  24. Garcia-Herrera, C. M., Celentano, D. J., Cruchaga, M. A., Rojo, F. J., Atienza, J. M., Guinea, G. V., et al. (2012). Mechanical characterization of the human thoracic descending aorta: Experiments and modelling. Computer Methods in Biomechanics and Biomedical Engineering, 15, 185–193.

    Article  Google Scholar 

  25. Baier, P. A., Srinivasan, L., Baier-Saip, J. A., Voelker, W., & Schilling, K. (2015). Surfaces for modeling arteries in virtual reality simulators. IFAC-PapersOnLine, 48, 031–036.

    Article  Google Scholar 

  26. Saez, P., Pena, E., & Martinez, M. A. (2014). A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Annals of Biomedical Engineering, 42, 1158–1169.

    Article  Google Scholar 

  27. Chen, P., Barner, K. E., & Steiner, K. V. (2006). A displacement driven real-time deformable model for haptic surgery simulation. In Proceedings of 2006 14th symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 499–505).

  28. Schmid, H., Grytsan, A., Poshtan, E., Watton, P. N., & Itskov, M. (2013). Influence of differing material properties in media and adventitia on arterial adaptation application to aneurysm formation and rupture. Computer Methods in Biomechanics and Biomedical Engineering, 16, 33–53.

    Article  Google Scholar 

  29. Schulze-Bauer, C. A. J., Regitnig, P., & Holzapfel, G. A. (2002). Mechanics of the human femoral adventitia including the high-pressure response. American Journal of Physiology and Heart and Circulatory Physiology, 282, H2427–H2440.

    Article  Google Scholar 

  30. Kerdok, A. E., Cotin, S. M., Ottensmeyer, M. P., Galea, A. M., Hove, R. D., & Dawson, S. L. (2003). Truth cube: Establishing physical standards for soft tissue simulation. Medical Image Analysis, 7, 283–291.

    Article  Google Scholar 

  31. Hemmasizadeh, A., Autieri, M., & Darvish, K. (2012). Multilayer material properties of aorta determined from nanoindentation tests. Journal of the Mechanical Behavior of Biomedical Materials, 15, 199–207.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Programa de Capacitação Institucional/Laboratório Nacional de Computação Científica (PCI/LNCC), Instituto Nacional de Ciência e Tecnologia - Medicina Assistida por Computação Científica (INCT-MACC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Projects 454815/2015-8, 573710/2008-2, 290011/2008-6) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, Project E-26/170.030/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen A. Baier-Saip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier-Saip, J.A., Baier, P.A., Schilling, K. et al. Approximate Artery Elasticity Using Linear Springs. J. Med. Biol. Eng. 37, 899–911 (2017). https://doi.org/10.1007/s40846-017-0254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0254-0

Keywords

Navigation