Skip to main content
Log in

Development of Compact, Cost-effective, FPGA-Based Data Acquisition System for the iPET System

Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is a nuclear medicine imaging technology used to analyze physiological processes. An in-beam PET is used to verify the delivered dose during ion-beam therapy. Our group investigates the prototype C-shaped PET system, which is called the iPET system. In this study, we develop an expendability-enhanced field-programmable gate array (FPGA)-based data acquisition system for the iPET. We organize this data acquisition (DAQ) system using only one DAQ board, to ensure a compact and cost-effective DAQ system. We design the FPGA using modular functions, which include synchronization, deserialization, pulse height analysis, and data packaging functions. As a result, energy spectra and well-separated 9 × 9 flood images of the entire detector module are achieved. We obtain reconstructed PET images of point source (4 mm diameter), three cylindrical phantoms (3 cm diameter), and four sphere phantoms (3.0, 2.2, 1.3 and 1.0 cm diameter). We achieve approximately 300 kcps of maximum single count rate. The obtained results prove the compactness and cost-effectiveness of the proposed DAQ system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine. Philadelphia: Elsevier Health Sciences.

    Google Scholar 

  2. Vaska, P., Woody, C. L., Schlyer, D. J., Shokouhi, S., Stoll, S. P., Pratte, J. F., et al. (2004). RatCAP: Miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Transactions on Nuclear Science, 51(5), 2718–2722.

    Article  Google Scholar 

  3. Crosetto, D. B. (2000). A modular VME or IBM PC based data acquisition system for multi-modality PET/CT scanners of different sizes and detector types. In Nuclear Science Symposium Conference Record, 2000 IEEE (Vol. 2, pp. 12/78–12/97).

  4. Shao, Y. P., Cherry, S. R., Farahani, K., Meadors, K., Siegel, S., Silverman, R. W., et al. (1997). Simultaneous PET and MR imaging. Physics in Medicine & Biology, 42(10), 1965–1970.

    Article  Google Scholar 

  5. Fysikopoulos, E., Georgiou, M., Efthimiou, N., David, S., Loudos, G., & Matsopoulos, G. (2014). Fully digital FPGA-based data acquisition system for dual head PET detectors. IEEE Transactions on Nuclear Science, 61(5), 2764–2770.

    Article  Google Scholar 

  6. Ko, G. B., Yoon, H. S., Kwon, S. I., Hong, S. J., Lee, D. S., & Lee, J. S. (2011). Development of FPGA-based coincidence units with veto function. Biomedical Engineering Letters, 1(1), 27–31.

    Article  Google Scholar 

  7. Fysikopoulos, E., Loudos, G., Georgiou, M., David, S., & Matsopoulos, G. (2012). A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine. Measurement Science & Technology, 23(12), 125403.

    Article  Google Scholar 

  8. Hu, W., Choi, Y., Hong, K. J., Kang, J., Jung, J. H., Huh, Y. S., et al. (2012). Free-running ADC-and FPGA-based signal processing method for brain PET using GAPD arrays. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 664(1), 370–375.

    Article  Google Scholar 

  9. Imrek, J., Novak, D., Hegyesi, G., Kalinka, G., Molnár, J., Végh, J., et al. (2006). Development of an FPGA-based data acquisition module for small animal PET. IEEE Transactions on Nuclear Science, 53(5), 2698–2703.

    Article  Google Scholar 

  10. Enghardt, W., Crespo, P., Fiedler, F., Hinz, R., Parodi, K., Pawelke, J., et al. (2004). Charged hadron tumour therapy monitoring by means of PET. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 525(1), 284–288.

    Article  Google Scholar 

  11. Shao, Y., Sun, X., Lou, K., Zhu, X. R., Mirkovic, D., Poenisch, F., et al. (2014). In-beam PET imaging for on-line adaptive proton therapy: An initial phantom study. Physics in Medicine & Biology, 59(13), 3373.

    Article  Google Scholar 

  12. Fiedler, F., Kunath, D., Priegnitz, M., & Enghardt, W. (2012). Online irradiation control by means of PET. In U. Linz (Ed.), Ion beam therapy (pp. 527–543). Berlin: Springer.

    Chapter  Google Scholar 

  13. Parodi, K., Enghardt, W., & Haberer, T. (2002). The potential of in-beam positron-emission-tomography for proton therapy monitoring: First phantom experiments. In Nuclear Science Symposium Conference Record, 2002 IEEE (Vol. 2, pp. 1193–1196).

  14. Pawelke, J., Enghardt, W., Haberer, T., Hasch, B., Hinz, R., Krämer, M., et al. (1997). In-beam PET imaging for the control of heavy-ion tumour therapy. IEEE Transactions on Nuclear Science, 44(4), 1492–1498.

    Article  Google Scholar 

  15. Parodi, K., Saito, N., Chaudhri, N., Richter, C., Durante, M., Enghardt, W., et al. (2009). 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy. Medical Physics, 36(9), 4230–4243.

    Article  Google Scholar 

  16. Nakajima, Y., Hirano, Y., Tashima, H., Yoshida, E., Sato, S., Inaniwa, T., Kohno, T., Sihver, L., & Yamaya, T. (2013). Dosimetry by means of in-beam PET with RI beam irradiation. In Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE (pp. 1–3).

  17. Shakirin, G., Braess, H., Fiedler, F., Kunath, D., Laube, K., Parodi, K., et al. (2011). Implementation and workflow for PET monitoring of therapeutic ion irradiation: A comparison of in-beam, in-room, and off-line techniques. Physics in Medicine & Biology, 56(5), 1281–1298.

    Article  Google Scholar 

  18. An, S. J., Beak, C.-H., Lee, K., & Chung, Y. H. (2013). A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 698, 37–43.

    Article  Google Scholar 

  19. Kim, H.-I., An, S. J., Lee, C., Jo, W., Min, E., Lee, K., et al. (2014). Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy. Journal of Instrumentation, 9(05), C05025.

    Article  Google Scholar 

  20. Min, E., Kim, H.-I., Kim, K., Lee, H., Bae, S., An, S. J., Kim, Y., Chung, Y. H., & Joung, J. (2013). FPGA-based multichannel data acquisition system for prototype in-beam PET. In Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE (pp. 1–4).

  21. Kim, H. I., Chung, Y. H., Lee, K., Kim, K. M., Kim, Y., & Joung, J. (2016). Preliminary results of a prototype C-shaped PET designed for an in-beam PET system. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 822, 57–62.

    Article  Google Scholar 

  22. Yamaya, T., Yoshida, E., Inaniwa, T., Sato, S., Nakajima, Y., Wakizaka, H., et al. (2011). Development of a small prototype for a proof-of-concept of OpenPET imaging. Physics in Medicine & Biology, 56(4), 1123.

    Article  Google Scholar 

  23. Pawelke, J., Byars, L., Enghardt, W., Fromm, W., Geissel, H., Hasch, B., et al. (1996). The investigation of different cameras for in-beam PET imaging. Physics in Medicine & Biology, 41(2), 279.

    Article  Google Scholar 

  24. Lewellen, T., Miyaoka, R., MacDonald, L., DeWitt, D., Haselman, M., & Hauck, S. (2010). Evolution of the design of a second generation FireWire based data acquisition system. In Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE (pp. 2510–2514).

  25. NuCare Medical Systems HGSP-DAQ64. http://www.nucaremed.com/products/sensors-electronic-components/sensors-electronic-components-2-3/daq64/.

  26. Texas Instruments ADS5272. http://www.ti.com/product/ADS5272.

  27. Altera ModelSim-Altera Software. https://www.altera.com/products/design-software/model—simulation/modelsim-altera-software.html.

  28. Mashino, H., & Yamamoto, S. (2007). Development of a compact and flexible data acquisition system for K-PETs. In World Congress on Medical Physics and Biomedical Engineering 2006 (pp. 1722–1725).

  29. Sportelli, G., Belcari, N., Guerra, P., Spinella, F., Franchi, G., Attanasi, F., et al. (2011). Reprogrammable acquisition architecture for dedicated positron emission tomography. IEEE Transactions on Nuclear Science, 58(3), 695–702.

    Article  Google Scholar 

  30. Sportelli, G., Belcari, N., Camarlinghi, N., Cirrone, G., Cuttone, G., Ferretti, S., et al. (2013). First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system. Physics in Medicine & Biology, 59(1), 43.

    Article  Google Scholar 

  31. Vecchio, S., Attanasi, F., Belcari, N., Camarda, M., Cirrone, G. P., Cuttone, G., et al. (2009). A PET prototype for “in-beam” monitoring of proton therapy. IEEE Transactions on Nuclear Science, 56(1), 51–56.

    Article  Google Scholar 

  32. Tashima, H., Yoshida, E., Inadama, N., Nishikido, F., Nakajima, Y., Wakizaka, H., et al. (2016). Development of a small single-ring OpenPET prototype with a novel transformable architecture. Physics in Medicine & Biology, 61(4), 1795.

    Article  Google Scholar 

  33. Ren, S., Yang, Y., & Cherry, S. R. (2014). Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Medical Physics, 41(7), 072503.

    Article  Google Scholar 

  34. Ramirez, R. A., Liu, S., Liu, J., Zhang, Y., Kim, S., Baghaei, H., et al. (2008). High-resolution L (Y) SO detectors using PMT-quadrant-sharing for human and animal PET cameras. IEEE Transactions on Nuclear Science, 55(3), 862–869.

    Article  Google Scholar 

  35. Parodi, K. (2012). PET monitoring of hadrontherapy. Nuclear Medicine Review, 15, C37–C42.

    Google Scholar 

  36. Nishio, T., Sato, T., Kitamura, H., Murakami, K., & Ogino, T. (2005). Distributions of β + decayed nuclei generated in the CH2 and H2O targets by the target nuclear fragment reaction using therapeutic MONO and SOBP proton beam. Medical Physics, 32(4), 1070–1082.

    Article  Google Scholar 

  37. Parodi, K., Paganetti, H., Cascio, E., Flanz, J. B., Bonab, A. A., Alpert, N. M., et al. (2007). PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants. Medical Physics, 34(2), 419–435.

    Article  Google Scholar 

  38. Haselman, M., Pasko, J., Hauck, S., Lewellen, T., & Miyaoka, R. (2012). FPGA-based pulse pile-up correction with energy and timing recovery. IEEE Transactions on Nuclear Science, 59(5), 1823–1830.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) Grant (2016R1A2B2007551), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) (20161520302180), and the Korea Institute of Radiological & Medical Sciences (2013K000092) funded by the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, E., Kim, K., Lee, H. et al. Development of Compact, Cost-effective, FPGA-Based Data Acquisition System for the iPET System. J. Med. Biol. Eng. 37, 858–866 (2017). https://doi.org/10.1007/s40846-017-0245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0245-1

Keywords

Navigation