Extraction of Microaneurysms and Hemorrhages from Digital Retinal Images


Detection of red lesions from color fundus images is crucial in the early detection of diabetic retinopathy. Automatic red lesion detection is a challenging task as they have low contrast, irregular shapes, variable sizes and resemblance of their intensities with blood vessels. This paper presents a novel hybrid red lesion detection system that combines phase congruency based and mathematical morphology based methods to detect candidate red lesions. The significant contribution of this paper is the computation of phase congruency using extended 2D log gabor filter. The proposed red lesion detection system is a three stage system which combines polynomial contrast enhancement for preprocessing, hybrid detection for coarse candidate red lesion extraction, and support vector machine classifier for fine segmentation of red lesions. Experimental evaluations of the proposed system using publicly available fundus image databases demonstrates superior performance over other red lesion detection algorithms recently reported in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    World health organization: prevention of blindness and visual impairment. http://www.who.int/blindness/causes/priority/en/index8.html.

  2. 2.

    Klonoff, D. C., & Schwartz, D. M. (2000). An economic analysis of interventions for diabetes. Diabetes Care, 23, 390–404.

    Article  Google Scholar 

  3. 3.

    Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., et al. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care., 35, 556–564.

    Article  Google Scholar 

  4. 4.

    Alghadyan, A. A. (2011). Diabetic retinopathy-an update. Saudi Journal of Ophthalmology, 25, 99–111.

    Article  Google Scholar 

  5. 5.

    Nunes, S., Pires, I., Rosa, A., Duarte, L., Bernardes, R., & Cunha-Vaz, J. (2009). Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: Findings for type 2 diabetics with non-proliferative retinopathy. Ophthalmologica, 223, 292–297.

    Article  Google Scholar 

  6. 6.

    Spencer, T., Olson, J., McHardy, K., Sharp, P., & Forrester, J. (1996). An image processing strategy for the segmentation and quantification in fluorescein angiograms of the ocular fundus. Computers and Biomedical Research, 29, 284–302.

    Article  Google Scholar 

  7. 7.

    Frame, A., Undrill, P., Cree, M., Olson, J., McHardy, K., Sharp, P., et al. (1998). A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Computers in Biology and Medicine, 28, 225–238.

    Article  Google Scholar 

  8. 8.

    Vincent, L. (1992). Morphological area openings and closings for grey scale images. In Proceedings of NATO shape in picture workshop (pp. 197–208). New York: Springer.

  9. 9.

    Mookiah, M. R. K., Acharya, U. R., Chua, C. K., Lim, C. M., Ng, E., & Laude, A. (2013). Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43, 2136–2155.

    Article  Google Scholar 

  10. 10.

    Acharya, U. R., Ng, E. Y. K., Tan, J. H., Sree, S. V., & Ng, K. H. (2012). An integrated index for the identification of diabetic retinopathy stages using texture parameters. Journal of Medical Systems, 36, 2011–2020.

    Article  Google Scholar 

  11. 11.

    Kahai, P., Namuduri, K. R., & Thompson, H. (2006). A decision support framework for automated screening of diabetic retinopathy. International Journal of Biomedical Imaging, 2006, 1–8.

    Article  Google Scholar 

  12. 12.

    Tavakoli, M., Shahri, R. P., Pourreza, H., Mehdizadeh, A., Banaee, T., & Toosi, M. H. B. (2013). A complementary method for automated detection of microaneurysms in fluorescein angiography fundus images to assess diabetic retinopathy. Pattern Recognition, 46, 2740–2753.

    Article  Google Scholar 

  13. 13.

    Niemeijer, M., Ginneken, B. V., Staal, J., Suttorp-Schulton, M. S., & Abramoff, M. D. (2005). Automatic detection of red lesions in digital color fundus photograph. IEEE Transactions on Medical Imaging, 24, 584–592.

    Article  Google Scholar 

  14. 14.

    Akram, M. U., Khalid, S., & Khan, S. A. (2013). Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognition, 46, 107–116.

    Article  Google Scholar 

  15. 15.

    Lazar, I., & Hajdu, A. (2013). Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Transactions on Medical Imaging, 32, 400–407.

    Article  Google Scholar 

  16. 16.

    Ram, K., Joshi, G. D., & Sivaswamy, J. (2011). A successive clutter-rejection-based approach for early detection of diabetic retinopathy. IEEE Transactions on Biomedical Engineering, 58, 664–673.

    Article  Google Scholar 

  17. 17.

    Zhang, B., Karray, F., Li, Q., & Zhang, L. (2012). Sparse representation classifier for microaneurysm detection and retinal blood vessel extraction. Information Sciences, 200, 78–90.

    Article  Google Scholar 

  18. 18.

    Sopharak, A., Uyyanonvara, B., & Barman, S. (2013). Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images. Computerized Medical Imaging and Graphics, 37, 394–402.

    Article  Google Scholar 

  19. 19.

    Fleming, A., Philip, S., Goatman, K., Olson, J., & Sharp, P. (2006). Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Transactions on Medical Imaging, 25, 1223–1232.

    Article  Google Scholar 

  20. 20.

    Antal, B., & Hajdu, A. (2012). An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Transactions on Biomedical Engineering, 59, 1720–1726.

    Article  Google Scholar 

  21. 21.

    Kande, G. B., Savithri, T. S., & Subbaiah, P. V. (2010). Automatic detection of microaneurysms and hemorrhages in digital fundus images. Journal of Digital Imaging, 23, 430–437.

    Article  Google Scholar 

  22. 22.

    Zhang, B., Wu, X., Yo, J., Li, Q., & Karray, F. (2010). Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recognition, 43, 2237–2248.

    Article  Google Scholar 

  23. 23.

    Quellec, G., Stephen, R., & Abramoff, M. D. (2011). Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Transactions on Medical Imaging, 30, 523–533.

    Article  Google Scholar 

  24. 24.

    Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., & Langlois, J. M. P. (2016). Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Transactions on Medical Imaging, 35, 1116–1126.

    Article  Google Scholar 

  25. 25.

    Quellec, G., Lamard, M., Josselin, P. M., Cazuguel, G., Cochener, B., & Roux, C. (2008). Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on Medical Imaging, 27, 1230–1241.

    Article  Google Scholar 

  26. 26.

    Liesenfeld, B., Kohner, E., Piehlmeier, W., Kluthe, S., Porta, M., Bek, T., et al. (2000). A telemedical approach to the screening of diabetic retinopathy, Digital fundus photography. Diabetes Care, 23, 345–348.

    Article  Google Scholar 

  27. 27.

    Walter, T., Massin, P., Erginary, A., Ordonez, R., Jeulin, C., & Klein, J. (2007). Automatic detection of microaneurysms in color fundus images. Medical Image Analysis, 11, 555–566.

    Article  Google Scholar 

  28. 28.

    Tagore, M.R.N., Kande, G.B., Rao, E.V.K., & Rao, B.P. (2013). Segmentation of retinal vasculature using phase congruency and hierarchical clustering. In Proceedings of the 2nd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2013) (pp. 361–366).

  29. 29.

    E. T. D. R. S. R. Group. (1991). Grading diabetic retinopathy from stereoscopic color fundus photographs–an extension of the modified airlie house classification. Ophthalmology, 98, 786–806.

    Article  Google Scholar 

  30. 30.

    Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.

    Article  MATH  Google Scholar 

  31. 31.

    Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  32. 32.

    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Raninen, A., et al. (2005). DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms, Technical Report.

  33. 33.

    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Raninen, A., et al. (2006). DIARETDB1 diabetic retinopathy database and evaluation protocol, Technical Report.

Download references

Author information



Corresponding author

Correspondence to Ravindranath Tagore Mamilla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mamilla, R.T., Ede, V.K.R. & Bhima, P.R. Extraction of Microaneurysms and Hemorrhages from Digital Retinal Images. J. Med. Biol. Eng. 37, 395–408 (2017). https://doi.org/10.1007/s40846-017-0237-1

Download citation


  • Retinopathy
  • Microaneurysms
  • Hemorrhages
  • Retina