A Novel Segmentation Approach for Intravascular Ultrasound Images

Abstract

Intravascular ultrasound (IVUS) is an important imaging technique to study the architecture of vascular wall for diagnosis and assessment of vascular diseases. Segmentation of lumen and media-adventitia boundaries from IVUS images is the foundation for quantitative assessment of the vascular walls. In this paper, a novel and fully automated segmentation approach is proposed for IVUS images. The proposed approach utilizes different segmentation strategies for lumen and media-adventitia boundaries respectively according to their different region and boundary features on IVUS images. For lumen, the segmentation is carried out by combining image gradient with a fuzzy connectedness model. For media-adventitia boundary segmentation, minimal path based on fast marching model is used. The effectiveness of the proposed IVUS image segmentation approach was validated by segmenting 180 IVUS images from nine patients, in which the results were compared to the corresponding gold standard. The approach achieved high mean overlap area ratios of (86.49 ± 16.93%)/(92.73 ± 5.47%) and small average boundary distances of (0.09 ± 0.10) mm/(0.07 ± 0.06) mm for lumen and media-adventitia, respectively. The obtained results have shown the potential of the proposed approach to effectively segment lumen and media-adventitia boundaries from IVUS images.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sonka, M., Zhang, X., Siebes, M., Bissing, M. S., Dejong, S. C., Collins, S. M., et al. (1995). Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Transactions on Medical Imaging, 14(4), 719–732.

    Article  Google Scholar 

  2. 2.

    Dijkstra, J., Koning, G., & Reiber, J. H. C. (1999). Quantitative measurements in IVUS images. International Journal of Cardiac Imaging, 15(6), 513–522.

    Article  Google Scholar 

  3. 3.

    Klingensmith, J., Shekhar, R., & Vince, D. (2000). Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Transactions on Medical Imaging, 19(10), 996–1011.

    Article  Google Scholar 

  4. 4.

    Kovalski, G., Beyar, R., Shofti, R., & Azhari, H. (2000). Three-dimensional automatic quantitative analysis of intravascular ultrasound images. Ultrasound in Medicine and Biology, 26(4), 527–537.

    Article  Google Scholar 

  5. 5.

    Mojsilovic, A., Popovic, M., Amodaj, N., Babic, R., & Ostojic, M. (1997). Automatic segmentation of intravascular ultrasound images: A texture-based approach. Annals of Biomedical Engineering, 25(6), 1059–1071.

    Article  Google Scholar 

  6. 6.

    Haas, C., Ermert, H., Holt, S., Grewe, P., Machraoui, A., & Barmeyer, J. (2000). Segmentation of 3D intravascular ultrasonic images based on a random field model. Ultrasound in Medicine and Biology, 26(2), 297–306.

    Article  Google Scholar 

  7. 7.

    Zhu, H., Liang, Y., & Friedman, M. (2002). IVUS image segmentation based on contrast. In Proceedings of the SPIE, Medical Imaging, Durhan, NC, USA (Vol. 4684, pp. 1727–1733).

  8. 8.

    Brusseau, E., DeKorte, C. L., Mastik, F., Mastik, F., Schaar, J., & VanDerSteen, A. F. (2004). fully automatic luminal contour segmentation in intracoronary ultrasound imaging—A statistical approach. IEEE Transactions on Medical Imaging, 23(5), 554–566.

    Article  Google Scholar 

  9. 9.

    Cardinal, M. H., Meunier, J., Soulez, G., Maurice, R. L., Therasse, E., & Cloutier, G. (2006). Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distribution. IEEE Transactions on Medical Imaging, 25(5), 590–601.

    Article  Google Scholar 

  10. 10.

    Dos, S. F. E., Yoshizawa, M., Tanaka, A., & Saijo, Y. (2006). A study on intravascular ultrasound image processing. Record of Electrical and Communication Engineering Conversazione, 74(2), 30–33.

    Google Scholar 

  11. 11.

    Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y. S., Giannoglou, G. D., & Kompatsiaris, I. (2008). Image analysis techniques for automated IVUS contour detection. Ultrasound in Medicine and Biology, 34(9), 1482–1498.

    Article  Google Scholar 

  12. 12.

    Katouzian, A., Baseri, B., Konofagou, E. E., & Laine, A. F. (2008). Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures. In Proceedings of the SPIE, Medical Imaging, San Diego, Ca, USA (Vol. 6920, pp. 1–8).

  13. 13.

    Zhang, Q., Wang, Y. Y., Wang, W. Q., Ma, J. Y., Qian, J. Y., & Ge, J. B. (2008). Intravascular ultrasound image segmentation based on active contour model and contourlet multiresolution analysis. Optics and Precision Engineering, 16(11), 2301–2311.

    Google Scholar 

  14. 14.

    Katouzian, A., Angelini, E. D., Sturm, B., Laine, A. F. (2012). Brushlet-driven segmentation framework for automatic detection of lumen borders in ivus images with comparison study. In The 9th international symposium on biomedical imaging, Barcelona, Spain (pp. 242–245).

  15. 15.

    Wennogle, M., Hoff, W. (2009). Three dimensional segmentation of intravascular ultrasound data. In The 6th international conference on image analysis and recognition, Halifax, Canada, LNCS (Vol. 5627, pp. 772–778).

  16. 16.

    Zhu, X. J., Zhang, P. F., Shao, J. H., Cheng, Y., Zhang, Y., & Bai, J. (2011). A snake based method for segmentation of intravascular ultrasound images and its in vivo validation. Ultrasonics, 51(2), 181–189.

    Article  Google Scholar 

  17. 17.

    Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., & Tanaka, K. (2008). Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Transaction on Information Technology in Biomedicine, 12(3), 335–347.

    Article  Google Scholar 

  18. 18.

    Rivera, M., & Dalmau, O. (2012). Variational viewpoint of the quadratic Markov measure field models: Theory and algorithms. IEEE Transaction on Image Processing, 21(3), 1246–1257.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Cardinal, M. H., Soulez, G., Tardif, J. C., Meunier, J., & Cloutier, G. (2010). Fast-marching segmentation of three-dimensional intravascular ultrasound images: A pre- and post-intervention study. Medical Physics, 37(7), 3633–3647.

    Article  Google Scholar 

  20. 20.

    Moraes, M., & Furuie, S. (2011). Automatic coronary wall segmentation in intravascular ultrasound images using binary morphological reconstruction. Ultrasound in Medicine and Biology, 37(9), 1486–1499.

    Article  Google Scholar 

  21. 21.

    Menddizabal-Ruiz, E. G., Rivera, M., & Kakadiaris, I. A. (2013). Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach. Medical Image Analysis, 17(6), 649–670.

    Article  Google Scholar 

  22. 22.

    Lazrag, H., Aloui, K., & Naceur, M. S. (2013). Automatic segmentation of lumen in intravascular ultrasound images using fuzzy clustering and active contours. International Conference on Control, Engineering & Information Technology, Proceedings Engineering & Technology, 1, 58–63.

    Google Scholar 

  23. 23.

    Menddizabal-Ruiz, E. G., Kakadiaris, I. A. (2016). A Physics-based intravascular ultrasound image reconstruction method for lumen segmentation. Computers in Biology and Medicine, 75, 19–29 (Accepted date: 14 May 2016).

  24. 24.

    Udupa, J. K., & Samarasekera, S. (1996). Fuzzy connectedness and object definition: theory, algorithms and applications in image segmentation. Graphical Models and Image Processing, 58(3), 246–261.

    Article  Google Scholar 

  25. 25.

    Deschamps, T., & Cohen, L. D. (2001). Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis, 5(4), 281–299.

    Article  Google Scholar 

  26. 26.

    Arfken, G. (1985). The method of steepest descents (3rd ed., pp. 428–435). Orlando, FL: Academic Press.

    Google Scholar 

  27. 27.

    Snyman, J. A. (2005). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms (1st ed.). Cambrige, MA: Springer.

    Google Scholar 

  28. 28.

    Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge, MA: MIT Press.

    Google Scholar 

  29. 29.

    Carvalho, B. M., Gau, C. J., Herman, G. T., & Kong, T. Yung. (1999). Algorithms for fuzzy segmentation. Pattern Analysis and Applications, 2, 73–81.

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by Shanghai Young College Teachers Training Program under Grant No. SLG14061. The content is solely the responsibility of the authors and does not necessarily represent the funding sources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiayong Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Lv, D. & Cui, Y. A Novel Segmentation Approach for Intravascular Ultrasound Images. J. Med. Biol. Eng. 37, 386–394 (2017). https://doi.org/10.1007/s40846-017-0233-5

Download citation

Keywords

  • Intravascular ultrasound
  • Fuzzy connectedness
  • Fast marching
  • Minimal path
  • Lumen segmentation
  • Media-adventitia segmentation