Effects of Carpal Tunnel Syndrome on Force Coordination and Muscle Coherence during Precision Pinch

Abstract

Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to investigate the effects of CTS on force coordination and muscle coherence during low-intensity sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device was used to measure the thumb and index finger forces while simultaneously collecting surface electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 15 s with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. The force discrepancy and the force coordination angle between the thumb and index finger forces were calculated, as well as the β-band (15–30 Hz) coherence between APB and FDI. The index finger applied greater force than the thumb (p < 0.05); this force discrepancy was increased with wrist flexion (p < 0.05), but was not affected by CTS (p > 0.05). The directional force coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit force coordination during precision pinch seems to be sensitive to wrist flexion, but is not affected by CTS. The β-band muscular coherence was increased by wrist flexion for CTS patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced exacerbation of CTS symptoms. This study demonstrates that wrist flexion negatively influences muscle and force coordination in CTS patients supporting the avoidance of flexion posture for symptom exacerbation and functional performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    MacDermid, J. C., & Wessel, J. (2004). Clinical diagnosis of carpal tunnel syndrome: A systematic review. Journal of Hand Therapy, 17(2), 309–319. doi:10.1197/j.jht.2004.02.015.

    Article  Google Scholar 

  2. 2.

    Wiesman, I. M., Novak, C. B., Mackinnon, S. E., & Winograd, J. M. (2003). Sensitivity and specificity of clinical testing for carpal tunnel syndrome. The Canadian Journal of Plastic Surgery, 11(2), 70–72.

    Article  Google Scholar 

  3. 3.

    Havton, L. A., Hotson, J. R., & Kellerth, J. O. (2007). Correlation of median forearm conduction velocity with carpal tunnel syndrome severity. Clinical Neurophysiology, 118(4), 781–785. doi:10.1016/j.clinph.2006.12.011.

    Article  Google Scholar 

  4. 4.

    Szabo, R. M., Gelberman, R. H., & Dimick, M. P. (1984). Sensibility testing in patients with carpal tunnel syndrome. Journal of Bone and Joint Surgery, 66(1), 60–64. American Volume.

    Article  Google Scholar 

  5. 5.

    Baker, N. A., Moehling, K. K., Desai, A. R., & Gustafson, N. P. (2013). Effect of carpal tunnel syndrome on grip and pinch strength compared with sex- and age-matched normative data. Arthritis Care Res (Hoboken), 65(12), 2041–2045. doi:10.1002/acr.22089.

    Article  Google Scholar 

  6. 6.

    Gehrmann, S., Tang, J., Kaufmann, R. A., Goitz, R. J., Windolf, J., & Li, Z. M. (2008). Variability of precision pinch movements caused by carpal tunnel syndrome. Journal of Hand Surgery, 33(7), 1069–1075. doi:10.1016/j.jhsa.2008.02.030. American Volume.

    Article  Google Scholar 

  7. 7.

    Tamburin, S., Cacciatori, C., Marani, S., & Zanette, G. (2008). Pain and motor function in carpal tunnel syndrome: A clinical, neurophysiological and psychophysical study. Journal of Neurology, 255(11), 1636–1643. doi:10.1007/s00415-008-0895-6.

    Article  Google Scholar 

  8. 8.

    Agabegi, S. S., Freiberg, R. A., Plunkett, J. M., & Stern, P. J. (2007). Thumb abduction strength measurement in carpal tunnel syndrome. Journal of Hand Surgery, 32(6), 859–866. doi:10.1016/j.jhsa.2007.04.007. American Volume.

    Article  Google Scholar 

  9. 9.

    Li, Z. M., Harkness, D. A., & Goitz, R. J. (2005). Thumb strength affected by carpal tunnel syndrome. Clinical Orthopaedics and Related Research, 441, 320–326.

    Article  Google Scholar 

  10. 10.

    Hsu, H. Y., Kuo, L. C., Kuo, Y. L., Chiu, H. Y., Jou, I. M., Wu, P. T., et al. (2013). Feasibility of a novel functional sensibility test as an assisted examination for determining precision pinch performance in patients with carpal tunnel syndrome. PLoS ONE, 8(8), e72064. doi:10.1371/journal.pone.0072064.

    Article  Google Scholar 

  11. 11.

    Lowe, B. D., & Freivalds, A. (1999). Effect of carpal tunnel syndrome on grip force coordination on hand tools. Ergonomics, 42(4), 550–564. doi:10.1080/001401399185469.

    Article  Google Scholar 

  12. 12.

    Yen, W. J., Kuo, Y. L., Kuo, L. C., Chen, S. M., Kuan, T. S., & Hsu, H. Y. (2014). Precision pinch performance in patients with sensory deficits of the median nerve at the carpal tunnel. Motor Control, 18(1), 29–43. doi:10.1123/mc.2013-0004.

    Article  Google Scholar 

  13. 13.

    Li, K., Evans, P. J., Seitz, W. H., Jr., & Li, Z. M. (2015). Carpal tunnel syndrome impairs sustained precision pinch performance. Clinical Neurophysiology, 126(1), 194–201. doi:10.1016/j.clinph.2014.05.004.

    Article  Google Scholar 

  14. 14.

    Baker, S. N., Olivier, E., & Lemon, R. N. (1997). Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. Journal of Physiology, 501(Pt 1), 225–241.

    Article  Google Scholar 

  15. 15.

    Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., & Lemon, R. N. (2000). Human cortical muscle coherence is directly related to specific motor parameters. Journal of Neuroscience, 20(23), 8838–8845.

    Google Scholar 

  16. 16.

    Kilner, J. M., Baker, S. N., Salenius, S., Jousmaki, V., Hari, R., & Lemon, R. N. (1999). Task-dependent modulation of 15–30 Hz coherence between rectified EMGs from human hand and forearm muscles. Journal of Physiology, 516(Pt 2), 559–570.

    Article  Google Scholar 

  17. 17.

    Fisher, R. J., Galea, M. P., Brown, P., & Lemon, R. N. (2002). Digital nerve anaesthesia decreases EMG–EMG coherence in a human precision grip task. Experimental Brain Research, 145(2), 207–214. doi:10.1007/s00221-002-1113-x.

    Article  Google Scholar 

  18. 18.

    Kilner, J. M., Fisher, R. J., & Lemon, R. N. (2004). Coupling of oscillatory activity between muscles is strikingly reduced in a deafferented subject compared with normal controls. Journal of Neurophysiology, 92(2), 790–796. doi:10.1152/jn.01247.2003.

    Article  Google Scholar 

  19. 19.

    Levine, D. W., Simmons, B. P., Koris, M. J., Daltroy, L. H., Hohl, G. G., Fossel, A. H., et al. (1993). A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. Journal of Bone and Joint Surgery, 75(11), 1585–1592. American Volume.

    Article  Google Scholar 

  20. 20.

    Keith, M. W., Masear, V., Chung, K. C., Maupin, K., Andary, M., Amadio, P. C., et al. (2009). American Academy of Orthopaedic Surgeons Clinical Practice Guideline on diagnosis of carpal tunnel syndrome. Journal of Bone and Joint Surgery, 91(10), 2478–2479. doi:10.2106/jbjs.i.00643. American Volume.

    Article  Google Scholar 

  21. 21.

    Basmajian, J. V., & Blumenstein, R. (1980). Electrode placement in EMG biofeedback. Baltimore: Williams & Wilkins.

    Google Scholar 

  22. 22.

    Marquardt, T. L., & Li, Z. M. (2013). Quantifying digit force vector coordination during precision pinch. Journal of Mechanics in Medicine and Biology, 13(2), 1350047. doi:10.1142/s0219519413500474.

    Article  Google Scholar 

  23. 23.

    Li, K., Nataraj, R., Marquardt, T. L., & Li, Z. M. (2013). Directional coordination of thumb and finger forces during precision pinch. PLoS ONE, 8(11), e79400. doi:10.1371/journal.pone.0079400.

    Article  Google Scholar 

  24. 24.

    Pasluosta, C. F., Domalain, M. M., Fang, Y., Yue, G. H., & Li, Z. M. (2013). Influence of nerve supply on hand electromyography coherence during a three-digit task. Journal of Electromyography and Kinesiology, 23(3), 594–599. doi:10.1016/j.jelekin.2013.01.006.

    Article  Google Scholar 

  25. 25.

    Imrhan, S. N. (1991). The influence of wrist position on different types of pinch strength. Applied Ergonomics, 22(6), 379–384.

    Article  Google Scholar 

  26. 26.

    Lamoreaux, L., & Hoffer, M. M. (1995). The effect of wrist deviation on grip and pinch strength. Clinical Orthopaedics and Related Research, 314, 152–155.

    Google Scholar 

  27. 27.

    Mathur, K., Pynsent, P. B., Vohra, S. B., Thomas, B., & Deshmukh, S. C. (2004). Effect of wrist position on power grip and key pinch strength following carpal tunnel decompression. Journal of hand surgery, 29(4), 390–392. doi:10.1016/j.jhsb.2004.02.012.

    Article  Google Scholar 

  28. 28.

    O’Driscoll, S. W., Horii, E., Ness, R., Cahalan, T. D., Richards, R. R., & An, K. N. (1992). The relationship between wrist position, grasp size, and grip strength. Journal of Hand Surgery, 17(1), 169–177. American Volume.

    Article  Google Scholar 

  29. 29.

    Li, Z. M. (2002). The influence of wrist position on individual finger forces during forceful grip. Journal of Hand Surgery, 27(5), 886–896. American Volume.

    Article  Google Scholar 

  30. 30.

    Harvey, L., Herbert, R. D., & Stadler, M. (2010). Effect of wrist position on thumb flexor and adductor torques in paralysed hands of people with tetraplegia. Clinical Biomechanics (Bristol, Avon), 25(3), 194–198. doi:10.1016/j.clinbiomech.2009.11.010.

    Article  Google Scholar 

  31. 31.

    Jesunathadas, M., Laitano, J., Hamm, T. M., & Santello, M. (2013). Across-muscle coherence is modulated as a function of wrist posture during two-digit grasping. Neuroscience Letters, 553, 68–71. doi:10.1016/j.neulet.2013.08.014.

    Article  Google Scholar 

  32. 32.

    Johnston, J. A., Winges, S. A., & Santello, M. (2009). Neural control of hand muscles during prehension. Advances in Experimental Medicine and Biology, 629, 577–596. doi:10.1007/978-0-387-77064-2_31.

    Article  Google Scholar 

  33. 33.

    Poston, B., Danna-Dos Santos, A., Jesunathadas, M., Hamm, T. M., & Santello, M. (2010). Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping. Journal of Neurophysiology, 104(2), 1141–1154. doi:10.1152/jn.00185.2010.

    Article  Google Scholar 

  34. 34.

    Winges, S. A., Kornatz, K. W., & Santello, M. (2008). Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. Journal of Neurophysiology, 99(3), 1119–1126. doi:10.1152/jn.01059.2007.

    Article  Google Scholar 

  35. 35.

    Lannin, N. A., Horsley, S. A., Herbert, R., McCluskey, A., & Cusick, A. (2003). Splinting the hand in the functional position after brain impairment: A randomized, controlled trial. Archives of Physical Medicine and Rehabilitation, 84(2), 297–302. doi:10.1053/apmr.2003.50031.

    Article  Google Scholar 

  36. 36.

    Pizzi, A., Carlucci, G., Falsini, C., Verdesca, S., & Grippo, A. (2005). Application of a volar static splint in poststroke spasticity of the upper limb. Archives of Physical Medicine and Rehabilitation, 86(9), 1855–1859. doi:10.1016/j.apmr.2005.03.032.

    Article  Google Scholar 

  37. 37.

    Coppieters, M. W., Schmid, A. B., Kubler, P. A., & Hodges, P. W. (2012). Description, reliability and validity of a novel method to measure carpal tunnel pressure in patients with carpal tunnel syndrome. Manual Therapy, 17(6), 589–592. doi:10.1016/j.math.2012.03.005.

    Article  Google Scholar 

  38. 38.

    Ebata, T., Imai, K., Tokunaga, S., Takahasi, Y., & Abe, Y. (2014). Thumb opposition in severe carpal tunnel syndrome with undetectable APB-CMAP. Hand Surgery, 19(2), 199–204. doi:10.1142/s0218810414500208.

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by Grant R01AR056964 from NIAMS/NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAMS or NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zong-Ming Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, SC., Xiu, K., Li, K. et al. Effects of Carpal Tunnel Syndrome on Force Coordination and Muscle Coherence during Precision Pinch. J. Med. Biol. Eng. 37, 328–335 (2017). https://doi.org/10.1007/s40846-017-0232-6

Download citation

Keywords

  • Carpal tunnel syndrome
  • Force coordination
  • Muscle coherence
  • Precision pinch