Abstract
Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to investigate the effects of CTS on force coordination and muscle coherence during low-intensity sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device was used to measure the thumb and index finger forces while simultaneously collecting surface electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 15 s with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. The force discrepancy and the force coordination angle between the thumb and index finger forces were calculated, as well as the β-band (15–30 Hz) coherence between APB and FDI. The index finger applied greater force than the thumb (p < 0.05); this force discrepancy was increased with wrist flexion (p < 0.05), but was not affected by CTS (p > 0.05). The directional force coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit force coordination during precision pinch seems to be sensitive to wrist flexion, but is not affected by CTS. The β-band muscular coherence was increased by wrist flexion for CTS patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced exacerbation of CTS symptoms. This study demonstrates that wrist flexion negatively influences muscle and force coordination in CTS patients supporting the avoidance of flexion posture for symptom exacerbation and functional performance.
This is a preview of subscription content, access via your institution.



References
- 1.
MacDermid, J. C., & Wessel, J. (2004). Clinical diagnosis of carpal tunnel syndrome: A systematic review. Journal of Hand Therapy, 17(2), 309–319. doi:10.1197/j.jht.2004.02.015.
- 2.
Wiesman, I. M., Novak, C. B., Mackinnon, S. E., & Winograd, J. M. (2003). Sensitivity and specificity of clinical testing for carpal tunnel syndrome. The Canadian Journal of Plastic Surgery, 11(2), 70–72.
- 3.
Havton, L. A., Hotson, J. R., & Kellerth, J. O. (2007). Correlation of median forearm conduction velocity with carpal tunnel syndrome severity. Clinical Neurophysiology, 118(4), 781–785. doi:10.1016/j.clinph.2006.12.011.
- 4.
Szabo, R. M., Gelberman, R. H., & Dimick, M. P. (1984). Sensibility testing in patients with carpal tunnel syndrome. Journal of Bone and Joint Surgery, 66(1), 60–64. American Volume.
- 5.
Baker, N. A., Moehling, K. K., Desai, A. R., & Gustafson, N. P. (2013). Effect of carpal tunnel syndrome on grip and pinch strength compared with sex- and age-matched normative data. Arthritis Care Res (Hoboken), 65(12), 2041–2045. doi:10.1002/acr.22089.
- 6.
Gehrmann, S., Tang, J., Kaufmann, R. A., Goitz, R. J., Windolf, J., & Li, Z. M. (2008). Variability of precision pinch movements caused by carpal tunnel syndrome. Journal of Hand Surgery, 33(7), 1069–1075. doi:10.1016/j.jhsa.2008.02.030. American Volume.
- 7.
Tamburin, S., Cacciatori, C., Marani, S., & Zanette, G. (2008). Pain and motor function in carpal tunnel syndrome: A clinical, neurophysiological and psychophysical study. Journal of Neurology, 255(11), 1636–1643. doi:10.1007/s00415-008-0895-6.
- 8.
Agabegi, S. S., Freiberg, R. A., Plunkett, J. M., & Stern, P. J. (2007). Thumb abduction strength measurement in carpal tunnel syndrome. Journal of Hand Surgery, 32(6), 859–866. doi:10.1016/j.jhsa.2007.04.007. American Volume.
- 9.
Li, Z. M., Harkness, D. A., & Goitz, R. J. (2005). Thumb strength affected by carpal tunnel syndrome. Clinical Orthopaedics and Related Research, 441, 320–326.
- 10.
Hsu, H. Y., Kuo, L. C., Kuo, Y. L., Chiu, H. Y., Jou, I. M., Wu, P. T., et al. (2013). Feasibility of a novel functional sensibility test as an assisted examination for determining precision pinch performance in patients with carpal tunnel syndrome. PLoS ONE, 8(8), e72064. doi:10.1371/journal.pone.0072064.
- 11.
Lowe, B. D., & Freivalds, A. (1999). Effect of carpal tunnel syndrome on grip force coordination on hand tools. Ergonomics, 42(4), 550–564. doi:10.1080/001401399185469.
- 12.
Yen, W. J., Kuo, Y. L., Kuo, L. C., Chen, S. M., Kuan, T. S., & Hsu, H. Y. (2014). Precision pinch performance in patients with sensory deficits of the median nerve at the carpal tunnel. Motor Control, 18(1), 29–43. doi:10.1123/mc.2013-0004.
- 13.
Li, K., Evans, P. J., Seitz, W. H., Jr., & Li, Z. M. (2015). Carpal tunnel syndrome impairs sustained precision pinch performance. Clinical Neurophysiology, 126(1), 194–201. doi:10.1016/j.clinph.2014.05.004.
- 14.
Baker, S. N., Olivier, E., & Lemon, R. N. (1997). Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. Journal of Physiology, 501(Pt 1), 225–241.
- 15.
Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., & Lemon, R. N. (2000). Human cortical muscle coherence is directly related to specific motor parameters. Journal of Neuroscience, 20(23), 8838–8845.
- 16.
Kilner, J. M., Baker, S. N., Salenius, S., Jousmaki, V., Hari, R., & Lemon, R. N. (1999). Task-dependent modulation of 15–30 Hz coherence between rectified EMGs from human hand and forearm muscles. Journal of Physiology, 516(Pt 2), 559–570.
- 17.
Fisher, R. J., Galea, M. P., Brown, P., & Lemon, R. N. (2002). Digital nerve anaesthesia decreases EMG–EMG coherence in a human precision grip task. Experimental Brain Research, 145(2), 207–214. doi:10.1007/s00221-002-1113-x.
- 18.
Kilner, J. M., Fisher, R. J., & Lemon, R. N. (2004). Coupling of oscillatory activity between muscles is strikingly reduced in a deafferented subject compared with normal controls. Journal of Neurophysiology, 92(2), 790–796. doi:10.1152/jn.01247.2003.
- 19.
Levine, D. W., Simmons, B. P., Koris, M. J., Daltroy, L. H., Hohl, G. G., Fossel, A. H., et al. (1993). A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. Journal of Bone and Joint Surgery, 75(11), 1585–1592. American Volume.
- 20.
Keith, M. W., Masear, V., Chung, K. C., Maupin, K., Andary, M., Amadio, P. C., et al. (2009). American Academy of Orthopaedic Surgeons Clinical Practice Guideline on diagnosis of carpal tunnel syndrome. Journal of Bone and Joint Surgery, 91(10), 2478–2479. doi:10.2106/jbjs.i.00643. American Volume.
- 21.
Basmajian, J. V., & Blumenstein, R. (1980). Electrode placement in EMG biofeedback. Baltimore: Williams & Wilkins.
- 22.
Marquardt, T. L., & Li, Z. M. (2013). Quantifying digit force vector coordination during precision pinch. Journal of Mechanics in Medicine and Biology, 13(2), 1350047. doi:10.1142/s0219519413500474.
- 23.
Li, K., Nataraj, R., Marquardt, T. L., & Li, Z. M. (2013). Directional coordination of thumb and finger forces during precision pinch. PLoS ONE, 8(11), e79400. doi:10.1371/journal.pone.0079400.
- 24.
Pasluosta, C. F., Domalain, M. M., Fang, Y., Yue, G. H., & Li, Z. M. (2013). Influence of nerve supply on hand electromyography coherence during a three-digit task. Journal of Electromyography and Kinesiology, 23(3), 594–599. doi:10.1016/j.jelekin.2013.01.006.
- 25.
Imrhan, S. N. (1991). The influence of wrist position on different types of pinch strength. Applied Ergonomics, 22(6), 379–384.
- 26.
Lamoreaux, L., & Hoffer, M. M. (1995). The effect of wrist deviation on grip and pinch strength. Clinical Orthopaedics and Related Research, 314, 152–155.
- 27.
Mathur, K., Pynsent, P. B., Vohra, S. B., Thomas, B., & Deshmukh, S. C. (2004). Effect of wrist position on power grip and key pinch strength following carpal tunnel decompression. Journal of hand surgery, 29(4), 390–392. doi:10.1016/j.jhsb.2004.02.012.
- 28.
O’Driscoll, S. W., Horii, E., Ness, R., Cahalan, T. D., Richards, R. R., & An, K. N. (1992). The relationship between wrist position, grasp size, and grip strength. Journal of Hand Surgery, 17(1), 169–177. American Volume.
- 29.
Li, Z. M. (2002). The influence of wrist position on individual finger forces during forceful grip. Journal of Hand Surgery, 27(5), 886–896. American Volume.
- 30.
Harvey, L., Herbert, R. D., & Stadler, M. (2010). Effect of wrist position on thumb flexor and adductor torques in paralysed hands of people with tetraplegia. Clinical Biomechanics (Bristol, Avon), 25(3), 194–198. doi:10.1016/j.clinbiomech.2009.11.010.
- 31.
Jesunathadas, M., Laitano, J., Hamm, T. M., & Santello, M. (2013). Across-muscle coherence is modulated as a function of wrist posture during two-digit grasping. Neuroscience Letters, 553, 68–71. doi:10.1016/j.neulet.2013.08.014.
- 32.
Johnston, J. A., Winges, S. A., & Santello, M. (2009). Neural control of hand muscles during prehension. Advances in Experimental Medicine and Biology, 629, 577–596. doi:10.1007/978-0-387-77064-2_31.
- 33.
Poston, B., Danna-Dos Santos, A., Jesunathadas, M., Hamm, T. M., & Santello, M. (2010). Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping. Journal of Neurophysiology, 104(2), 1141–1154. doi:10.1152/jn.00185.2010.
- 34.
Winges, S. A., Kornatz, K. W., & Santello, M. (2008). Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. Journal of Neurophysiology, 99(3), 1119–1126. doi:10.1152/jn.01059.2007.
- 35.
Lannin, N. A., Horsley, S. A., Herbert, R., McCluskey, A., & Cusick, A. (2003). Splinting the hand in the functional position after brain impairment: A randomized, controlled trial. Archives of Physical Medicine and Rehabilitation, 84(2), 297–302. doi:10.1053/apmr.2003.50031.
- 36.
Pizzi, A., Carlucci, G., Falsini, C., Verdesca, S., & Grippo, A. (2005). Application of a volar static splint in poststroke spasticity of the upper limb. Archives of Physical Medicine and Rehabilitation, 86(9), 1855–1859. doi:10.1016/j.apmr.2005.03.032.
- 37.
Coppieters, M. W., Schmid, A. B., Kubler, P. A., & Hodges, P. W. (2012). Description, reliability and validity of a novel method to measure carpal tunnel pressure in patients with carpal tunnel syndrome. Manual Therapy, 17(6), 589–592. doi:10.1016/j.math.2012.03.005.
- 38.
Ebata, T., Imai, K., Tokunaga, S., Takahasi, Y., & Abe, Y. (2014). Thumb opposition in severe carpal tunnel syndrome with undetectable APB-CMAP. Hand Surgery, 19(2), 199–204. doi:10.1142/s0218810414500208.
Acknowledgements
This publication was made possible by Grant R01AR056964 from NIAMS/NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAMS or NIH.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, SC., Xiu, K., Li, K. et al. Effects of Carpal Tunnel Syndrome on Force Coordination and Muscle Coherence during Precision Pinch. J. Med. Biol. Eng. 37, 328–335 (2017). https://doi.org/10.1007/s40846-017-0232-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Carpal tunnel syndrome
- Force coordination
- Muscle coherence
- Precision pinch