Evaluation of Osseointegration in Titanium and Zirconia-Based Dental Implants with Surface Modification in a Miniature Pig Model


The objective of this study was to evaluate osseointegration of surface-treated zirconia dental implants using a mini-pig model. Experimentally, zirconia implants with acid-etched surfaces and commercial titanium implants as a control group were introduced into the maxilla and mandible of nine mini-pigs. After 8 and 16 weeks, animals were sacrificed and harvested specimens were examined in terms of resonance frequency analysis, micro-computed tomography, scanning electron microscopy and Masson Goldner staining techniques. The parameters calculated for each section included bone to implant volume (BIV%) and actual bone-implant contact (BIC%). All results were expressed as means ± standard deviations. The different treatment groups were compared using paired t tests. A p < 0.05 was set for significance. Histological results showed that close contact of the bone to implant was seen both on titanium and zirconia surfaces. After 8 weeks of healing, hard tissue integration of the zirconia as well as the titanium implants was achieved. Bone implant contact as measured by histomorphometry was similar across titanium and zirconia-modified surfaces; a statistically significant difference between the two groups was not observed. The results demonstrated that zirconia implants with modified surfaces result in osseointegration that is comparable with that of titanium implants. Additionally, the results from our study suggest that zirconia implants with modified surfaces display good features of osseointegration. Especially into the bone loss maxilla.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Adell, R., Lekholm, U., Rockler, B., & Branemark, P. I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10, 387–416.

    Article  Google Scholar 

  2. 2.

    Albrektsson, T., Sennerby, L., & Wennerberg, A. (2008). State of the art of oral implants. Periodontol, 2000(47), 15–26.

    Article  Google Scholar 

  3. 3.

    Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20, 1–25.

    Article  Google Scholar 

  4. 4.

    Garvie, R. C. (1965). Occurrence of metastable tetragonal zirconia as a crystallite size effect. Journal of Physical Chemistry, 69, 1238–1243.

    Article  Google Scholar 

  5. 5.

    Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24, 299–307.

    Article  Google Scholar 

  6. 6.

    Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., et al. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49, 155–166.

    Article  Google Scholar 

  7. 7.

    Anselme, K., Linez, P., Bigerelle, M., Le Maguer, D., Le Maguer, A., Hardouin, P., et al. (2000). The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behavior. Biomaterials, 21, 1567–1577.

    Article  Google Scholar 

  8. 8.

    Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., et al. (2003). Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Materials Science and Engineering C: Materials for Biological Application, 23, 551–560.

    Article  Google Scholar 

  9. 9.

    Buser, D., Schenk, R. K., Steinemann, S., Fiorellini, J. P., Fox, C. H., & Stich, H. (1991). Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research, 25, 889–902.

    Article  Google Scholar 

  10. 10.

    Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, S., Amedee, J., & Missirlis, Y. F. (2001). Effect of surface roughness of the titanium alloy Ti-6Al-4 V on human bone marrow cell response and on protein adsorption. Biomaterials, 22, 1241–1251.

    Article  Google Scholar 

  11. 11.

    Büchter, A., Joos, U., Wiesmann, H. P., Seper, L., & Meyer, U. (2006). Biological and biomechanical evaluation of interface reaction at conical screw-type implants. Head & Face Medicine, 2, 5.

    Article  Google Scholar 

  12. 12.

    Elian, N., Bloom, M., Dard, M., Cho, S. C., Trushkowsky, R. D., & Tarnow, D. (2014). Radiological and micro-computed tomography analysis of the bone at dental implants inserted 2, 3 and 4 mm apart in a minipig model with platform switching incorporated. Clinical Oral Implants Research, 25, e22–e29.

    Article  Google Scholar 

  13. 13.

    Chang, W. J., Lee, S. Y., Wu, C. C., Lin, C. T., Abiko, Y., Yamamichi, N., et al. (2007). A newly designed resonance frequency analysis device for dental implant stability detection. Dental Materials Journal, 26, 665–671.

    Article  Google Scholar 

  14. 14.

    Huang, H. M., Lee, S. Y., Yeh, C. Y., & Lin, C. T. (2002). Resonance frequency assessment of dental implant stability with various bone quality: A numerical approach. Clinical Oral Implants Research, 13, 65–74.

    Article  Google Scholar 

  15. 15.

    Vandeweghe, S., Coelho, P. G., Vanhove, C., Wennerberg, A., & Jimbo, R. (2013). Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 101, 1259–1266.

    Article  Google Scholar 

  16. 16.

    Hsu, J. T., Huang, H. L., Chang, C. H., Tsai, M. T., Hung, W. C., & Fuh, L. J. (2013). Relationship of three dimensional bone-to-implant contact to primary implant stability and peri-implant bone strain in immediate loading: Microcomputed tomographic and in vitro analyses. International Journal of Oral and Maxillofacial Implants, 28, 367–374.

    Article  Google Scholar 

  17. 17.

    Depprich, R., Zipprich, H., Ommerborn, M., Mahn, E., Lammers, L., Handschel, J., et al. (2008). Osseointegration of zirconia implants: An SEM observation of the bone-implant interface. Head & Face Medicine, 4, 25.

    Article  Google Scholar 

  18. 18.

    Gahlert, M., Roehling, S., Sprecher, C. M., Kniha, H., Milz, S., & Bormann, K. (2012). In vivo performance of zirconia and titanium implants: A histomorphometric study in mini pig maxillae. Clinical Oral Implants Research, 23, 281–286.

    Article  Google Scholar 

  19. 19.

    Schenk, R. K., Buser, D., Hardwick, W. R., & Dahlin, C. (1994). Healing pattern of bone re-generation in membrane-protected defects: A histologic study in the canine mandible. International Journal of Oral and Maxillofacial Implants, 9, 13–29.

    Google Scholar 

  20. 20.

    Gruber, H. E. (1992). Adaptations of Goldner’s Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotechnic and Histochemistry, 67, 30–34.

    Article  Google Scholar 

Download references


The authors acknowledge the financial support of this work from the Ministry of Economic Affairs of Taiwan under Grant 99-EC-17-A-19-S1-160.

Author information



Corresponding author

Correspondence to Sheng-Yang Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuo, TF., Lu, HC., Tseng, CF. et al. Evaluation of Osseointegration in Titanium and Zirconia-Based Dental Implants with Surface Modification in a Miniature Pig Model. J. Med. Biol. Eng. 37, 313–320 (2017). https://doi.org/10.1007/s40846-017-0230-8

Download citation


  • Zirconia implant
  • Acid-etched
  • Osseointegration
  • Miniature pig