Integrating Compliant Actuator and Torque Limiter Mechanism for Safe Home-Based Upper-Limb Rehabilitation Device Design

Abstract

Stroke patients may prefer to rehabilitate at home, which limits their access to appropriate training devices and safety without supervised assistance by qualified personnel. However, most training devices are bulky and lack adequate safety for home-based training. To address this limitation, we have developed a device with a variable stiffness actuator (VSA) that was designed in the vsaUT-II and an effective torque limiter mechanism. First, compared with traditional actuators with very high mechanical impedance, actuators with adaptive compliance have many advantages for rehabilitation devices. For instance, compliant actuators can guarantee patient safety, especially, when a muscle spasm occurs. Moreover, stiffness can be adjusted to adapt to a specific level of patient impairment. Compliance in our device was realised using a VSA. Second, to avoid any danger in the absence of professionally supervised assistance, a novel torque limiter mechanism was designed. The mechanism can be released and effectively reduces the driving force whenever a spasm occurs. The experimental results prove that by adjusting the ratio between the internal springs and actuator output, the output stiffness is changed. The dynamic modeling of the device was also designed within a small deflection of the elastic elements. The torque limiter mechanism was evaluated with variable stiffness for ensuring safety in various conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics–2010 update: A report from the American Heart Association. Circulation, 121, 46–215.

    Article  Google Scholar 

  2. 2.

    Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(741–754), 2009.

    Google Scholar 

  3. 3.

    Novak, D., Nagle, A., Keller, U., & Riener, R. (2014). Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of NeuroEngineering and Rehabilitation, 11(1), 64.

    Article  Google Scholar 

  4. 4.

    Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of NeuroEngineering and Rehabilitation, 11(1), 111.

    Article  Google Scholar 

  5. 5.

    Hogan, N., Krebs, H. I., Sharon, A., & Chammarong, J. (1995). Interactive robotic therapist. U.S. Patent, 5,466,213, 14.

  6. 6.

    Song, Z., Guo, S., & Fu, Y. (2011). Development of an upper extremity motor function rehabilitation system and assessment system. Int. J. Mechatron. Autom., 1(3/4), 19–28.

    Article  Google Scholar 

  7. 7.

    Mayhew, D., Bachrach, B., Rymer, W. Z., & Beer, R. F. (2005). Development of the MACARM-a novel cable robot for upper limb neurorehabilitation. In: Proceedings of the 9th international conference on rehabilitation robotics, pp. 299–302.

  8. 8.

    Vitiello, N., Lenzi, T., Roccella, S., Rossi, S. M. M. D., Cattin, E., Giovacchini, F., et al. (2013). NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Transactions on Robotics, 29(1), 220–235.

    Article  Google Scholar 

  9. 9.

    Wang, W., Tsai, B., Hsu, L., Fu, L., & Lai, J. (2014). Guidance-control-based exoskeleton rehabilitation robot for upper limbs: Application to circle drawing for physiotherapy and training. Journal of Medical and Biological Engineering, 34(3), 284–292.

    Article  Google Scholar 

  10. 10.

    Stienen, A. H. A., Hekman, E. E. G., van der Helm, F. C. T., & van der Kooij, H. (2009). Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Transactions on Robotics, 25(3), 628–633.

    Article  Google Scholar 

  11. 11.

    Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922–931.

    Article  Google Scholar 

  12. 12.

    Nijenhuis, S. M., Prange, G. B., Amirabdollahian, F., Sale, P., Infarinato, F., Nasr, N., et al. (2015). Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 12, 89.

    Article  Google Scholar 

  13. 13.

    Sivan, M., Gallagher, J., Makower, S., Keeling, D., Bhakta, B., O’Connor, R. J., et al. (2014). Home-based computer assisted arm rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: Result of a feasibility study in home setting. Journal of NeuroEngineering and Rehabilitation, 11, 163.

    Article  Google Scholar 

  14. 14.

    Lenzi, T., Vitiello, N., De Rossi, S. M. M., Roccella, S., Vecchi, F., Carrozza, M. C. (2011). NEUROExos: A variable impedance powered elbow exoskeleton. In Proceeding of 2011 IEEE international conference on robotics and automation, pp. 1419–1426.

  15. 15.

    Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Noreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions Neural Systems and Rehabilitation Engineering, 15(3), 367–378.

    Article  Google Scholar 

  16. 16.

    Ham, R. V., Sugar, T. G., Vanderborght, B., Hollander, K. W., & Lefeber, D. (2009). Compliant actuator designs. IEEE Robotics and Automation Magazine, 16(3), 81–94.

    Article  Google Scholar 

  17. 17.

    Vanderborght, B., Albu-Schaeffer, A., Bicchib, A., Burdetd, E., Caldwelle, D. G., Carlonic, R., et al. (2013). Variable impedance actuators: A review. Robotics and Autonomous Systems, 61(12), 1601–1614.

    Article  Google Scholar 

  18. 18.

    Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., et al. (2014). Implementation of resistance training using an upper-limb exoskeleton rehabilitation device in elbow joint. Journal of Medical and Biological Engineering (JMBE), 34(2), 188–196.

    Article  Google Scholar 

  19. 19.

    Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuator. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp. 399–406, Pittsburgh.

  20. 20.

    Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., & Carloni, R. (2012). The vsaUT-II: A novel rotational variable stiffness actuator. IEEE International Conference on Robotics and Automation (ICRA), 2012, 3355–3360.

    Google Scholar 

  21. 21.

    Oblak, J., Cikajlo, I., & Matjacic, Z. (2010). Univesral haptic drive: A robot for arm and wrist rehabilitation. IEEE Transactions Neural Systems and Rehabilitation Engineering, 18(3), 293–302.

    Article  Google Scholar 

  22. 22.

    Rahman, T., Sample, W., Jayakumar, S., King, M. M., Wee, J. Y., Seliktar, R., et al. (2006). Passive exoskeleton for assisting limb movement. Journal of Rehabilitation Research and Development, 43(5), 583–590.

    Article  Google Scholar 

  23. 23.

    Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., & Carloni, R. (2014). The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification. IEEE/ASME Transactions on Mechatronics, 91(2), 589–597.

    Article  Google Scholar 

  24. 24.

    Zhang, S., Guo, S., Gao, B., Hirata, H., & Ishihara, H. (2015). Design a novel telerehabilitation system with a force-sensing mechanism. Sensors, 15(5), 11511–11527.

    Article  Google Scholar 

  25. 25.

    Song, Z., & Guo, S. (2012). Design process of exoskeleton rehabilitation device and implementation of bilateral upper limb motor movement. Journal of Medical and Biological Engineering, 32(5), 323–330.

    Article  Google Scholar 

  26. 26.

    Zhang, S., Guo, S., Gao, B., Huang, Q., Pang, M., Hirata, H., et al. (2016). Muscle strength assessment system using sEMG-based force prediction method for wrist joint. Journal of Medical and Biological Engineering, 36(1), 121–131.

    Article  Google Scholar 

  27. 27.

    https://www.xsens.com/products/mtx/.

Download references

Acknowledgements

This research is partly supported by National Natural Science Foundation of China (61375094), Key Research Program of the National Science Foundation of Tianjin (13JCZDJC26200), National High Tech. Research and Development Program of China (No. 2015AA043202) and JSPS KAKENHI Grant Number 15K2120.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Songyuan Zhang or Shuxiang Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guo, S., Fu, Y. et al. Integrating Compliant Actuator and Torque Limiter Mechanism for Safe Home-Based Upper-Limb Rehabilitation Device Design. J. Med. Biol. Eng. 37, 357–364 (2017). https://doi.org/10.1007/s40846-017-0228-2

Download citation

Keywords

  • Home-based
  • Safety
  • Self-administered training
  • Compliant actuator
  • Torque limiter mechanism