Effect of Ferrule Height and Post Length on Mechanical Stress and Displacement of Endodontically Treated Maxillary Central Incisor: A Finite Element Analysis

Abstract

The successful of endodontic treatment for patients suffering with root canal problems is mainly dependent on several factors such as design, material and length of the post and ferrule. The survival of maxillary central incisor after root canal treatment is mainly associated with the behavior of the dental post implant embedded in the teeth that acts as a replacement of the pulp. There are few consensuses found on the effect of ferrule height and post length with regard to the mechanical assessments of endodontically treated maxillary central incisors through numerical analysis. Through this study, dental posts with different lengths—11, 13.5 and 16 mm—were investigated using three different ferrule heights—0, 2 and 4 mm—via three-dimensional finite element analysis. The results showed that the stress level within the dentin and post decreased as the dental post length and ferrule height increased. Also, the increase in ferrule height considerably decreased the displacement of the core body. Both ferrule height and post lengths showed a significant effect on the mechanical assessment of treated teeth; however, the ferrule height was found to be superior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Reeh, E. S., Messer, H. H., & Douglas, W. H. (1989). Reduction in tooth stiffness as a result of endodontic and restorative procedures. Journal of Endodontics, 15(11), 512–516. doi:10.1016/s0099-2399(89)80191-8.

    Article  Google Scholar 

  2. 2.

    Tjan, A. H., & Whang, S. B. (1985). Resistance to root fracture of dowel channels with various thicknesses of buccal dentin walls. The Journal of Prosthetic Dentistry, 53(4), 496–500.

    Article  Google Scholar 

  3. 3.

    Pereira, J. R., de Ornelas, F., Rodrigues Conti, P. C., & Lins do Valle, A. (2006). Effect of a crown ferrule on the fracture resistance of endodontically treated teeth restored with prefabricated posts. The Journal of Prosthetic Dentistry, 95(1), 50–54. doi:10.1016/j.prosdent.2005.10.019.

    Article  Google Scholar 

  4. 4.

    Varvara, G., Perinetti, G., Di Iorio, D., Murmura, G., & Caputi, S. (2007). In vitro evaluation of fracture resistance and failure mode of internally restored endodontically treated maxillary incisors with differing heights of residual dentin. The Journal of Prosthetic Dentistry, 98(5), 365–372. doi:10.1016/S0022-3913(07)60121-8.

    Article  Google Scholar 

  5. 5.

    Nissan, J., Barnea, E., Bar Hen, D., & Assif, D. (2008). Effect of remaining coronal structure on the resistance to fracture of crowned endodontically treated maxillary first premolars. Quintessence International, 39(8), e183–187.

    Google Scholar 

  6. 6.

    Zhi-Yue, L., & Yu-Xing, Z. (2003). Effects of post-core design and ferrule on fracture resistance of endodontically treated maxillary central incisors. The Journal of Prosthetic Dentistry, 89(4), 368–373. doi:10.1067/mpr.2003.73.

    Article  Google Scholar 

  7. 7.

    Akkayan, B. (2004). An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber-reinforced and zirconia dowel systems. The Journal of Prosthetic Dentistry, 92(2), 155–162. doi:10.1016/j.prosdent.2004.04.027.

    Article  Google Scholar 

  8. 8.

    Al-Hazaimeh, N., & Gutteridge, D. L. (2001). An in vitro study into the effect of the ferrule preparation on the fracture resistance of crowned teeth incorporating prefabricated post and composite core restorations. International Endodontic Journal, 34(1), 40–46. doi:10.1046/j.1365-2591.2001.00351.x.

    Article  Google Scholar 

  9. 9.

    Darabi, F., & Namazi, L. (2009). A comparison of the fracture resistance of endodontically treated teeth using two different restoration systems (Vol. 5, 2009, Vol. 2).

  10. 10.

    Ferrari, M., Cagidiaco, M. C., Grandini, S., De Sanctis, M., & Goracci, C. (2007). Post placement affects survival of endodontically treated premolars. Journal of Dental Research, 86(8), 729–734.

    Article  Google Scholar 

  11. 11.

    Sorensen, J. A., & Martinoff, J. T. (1984). Clinically significant factors in dowel design. The Journal of Prosthetic Dentistry, 52(1), 28–35.

    Article  Google Scholar 

  12. 12.

    Stockton, L. W. (1999). Factors affecting retention of post systems: A literature review. The Journal of Prosthetic Dentistry, 81(4), 380–385. doi:10.1016/S0022-3913(99)80002-X.

    Article  Google Scholar 

  13. 13.

    Schiavetti, R., Garcia-Godoy, F., Toledano, M., Mazzitelli, C., Barlattani, A., Ferrari, M., et al. (2010). Comparison of fracture resistance of bonded glass fiber posts at different lengths. American Journal of Dentistry, 23(4), 227–230.

    Google Scholar 

  14. 14.

    Cheng, Y. Y., Cheung, W. L., & Chow, T. W. (2010). Strain analysis of maxillary complete denture with three-dimensional finite element method. The Journal of Prosthetic Dentistry, 103(5), 309–318. doi:10.1016/S0022-3913(10)60064-9.

    Article  Google Scholar 

  15. 15.

    Jianping, G., Weiqi, Y., & Wei, X. (2008). Application of the finite element method in implant dentistry. Berlin: Springer.

  16. 16.

    Akca, K., & Iplikcioglu, H. (2001). Finite element stress analysis of the influence of staggered versus straight placement of dental implants. The International Journal of Oral & Maxillofacial Implants, 16(5), 722–730.

    Google Scholar 

  17. 17.

    Holmgren, E. P., Seckinger, R. J., Kilgren, L. M., & Mante, F. (1998). Evaluating parameters of osseointegrated dental implants using finite element analysis–a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology, 24(2), 80–88. doi:10.1563/1548-1336(1998)024<0080:epoodi>2.3.co;2.

    Article  Google Scholar 

  18. 18.

    Genovese, K., Lamberti, L., & Pappalettere, C. (2005). Finite element analysis of a new customized composite post system for endodontically treated teeth. Journal of Biomechanics, 38(12), 2375–2389. doi:10.1016/j.jbiomech.2004.10.009.

    Article  Google Scholar 

  19. 19.

    Lin, C.-L., Chang, C.-H., Cheng, C.-S., Wang, C.-H., & Lee, H.-E. (1999). Automatic finite element mesh generation for maxillary second premolar. Computer Methods and Programs in Biomedicine, 59(3), 187–195. doi:10.1016/S0169-2607(99)00004-8.

    Article  Google Scholar 

  20. 20.

    Jiang, W., Bo, H., YongChun, G., & LongXing, N. (2010). Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: A three-dimensional finite element analysis. The Journal of Prosthetic Dentistry, 103(1), 6–12. doi:10.1016/S0022-3913(09)60206-7.

    Article  Google Scholar 

  21. 21.

    Su, K.-C., Chang, C.-H., & Chuang, S.-F. (2007). Biomechanical evaluation of endodontic posts—Finite element analysis. Journal of Biomechanics, 40, Supplement 2(0), S463–S464. doi:10.1016/S0021-9290(07)70455-4.

  22. 22.

    Pegoretti, A., Fambri, L., Zappini, G., & Bianchetti, M. (2002). Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials, 23(13), 2667–2682. doi:10.1016/S0142-9612(01)00407-0.

    Article  Google Scholar 

  23. 23.

    Maceri, F., Martignoni, M., & Vairo, G. (2007). Mechanical behaviour of endodontic restorations with multiple prefabricated posts: A finite-element approach. Journal of Biomechanics, 40(11), 2386–2398. doi:10.1016/j.jbiomech.2006.11.018.

    Article  Google Scholar 

  24. 24.

    Abdulrazzak, S. S., Sulaiman, E., Atiya, B. K., & Jamaludin, M. (2013). Effect of ferrule height and glass fibre post length on fracture resistance and failure mode of endodontically treated teeth. Australian Endodontic Journal. doi:10.1111/aej.12042.

    Google Scholar 

  25. 25.

    Gerard, J. T., & Bryan, D. (2009). Principles of anatomy and physiology (12th ed.). New York: Wiley.

    Google Scholar 

  26. 26.

    Nakamura, T., Ohyama, T., Waki, T., Kinuta, S., Wakabayashi, K., Mutobe, Y., et al. (2006). Stress analysis of endodontically treated anterior teeth restored with different types of post material. Dental Materials, 25(1), 145–150.

    Article  Google Scholar 

  27. 27.

    Lin, C.-L., Chang, Y.-H., & Liu, P.-R. (2008). Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: A finite element study. Journal of Dentistry, 36(3), 194–203. doi:10.1016/j.jdent.2007.11.016.

    Article  Google Scholar 

  28. 28.

    Ausiello, P., Rengo, S., Davidson, C. L., & Watts, D. C. (2004). Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dental Materials, 20(9), 862–872. doi:10.1016/j.dental.2004.05.001.

    Article  Google Scholar 

  29. 29.

    Varvara, G., Perinetti, G., Di Iorio, D., Murmura, G., & Caputi, S. (2007). In vitro evaluation of fracture resistance and failure mode of internally restored endodontically treated maxillary incisors with differing heights of residual dentin. The Journal of Prosthetic Dentistry, 98(5), 365–372. doi:10.1016/s0022-3913(07)60121-8.

    Article  Google Scholar 

  30. 30.

    Loney, R. W., Kotowicz, W. E., & McDowell, G. C. (1990). Three-dimensional photoelastic stress analysis of the ferrule effect in cast post and cores. The Journal of Prosthetic Dentistry, 63(5), 506–512. doi:10.1016/0022-3913(90)90066-L.

    Article  Google Scholar 

  31. 31.

    Tan, P. L. B., Aquilino, S. A., Gratton, D. G., Stanford, C. M., Tan, S. C., Johnson, W. T., et al. (2005). In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations. The Journal of Prosthetic Dentistry, 93(4), 331–336. doi:10.1016/j.prosdent.2005.01.013.

    Article  Google Scholar 

  32. 32.

    White, S. N., Miklus, V. G., McLaren, E. A., Lang, L. A., & Caputo, A. A. (2005). Flexural strength of a layered zirconia and porcelain dental all-ceramic system. The Journal of Prosthetic Dentistry, 94(2), 125–131. doi:10.1016/j.prosdent.2005.05.007.

    Article  Google Scholar 

  33. 33.

    Staninec, M., Marshall, G. W., Hilton, J. F., Pashley, D. H., Gansky, S. A., Marshall, S. J., et al. (2002). Ultimate tensile strength of dentin: Evidence for a damage mechanics approach to dentin failure. Journal of Biomedical Materials Research, 63(3), 342–345. doi:10.1002/jbm.10230.

    Article  Google Scholar 

  34. 34.

    Reagan, S. E., Fruits, T. J., Van Brunt, C. L., & Ward, C. K. (1999). Effects of cyclic loading on selected post-and-core systems. Quintessence International, 30(1), 61–67.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikman Ishak.

Ethics declarations

Conflict of Interest

Author A, Author B, and Author C declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishak, M.I., Ahmad Shafi, A., Abdul Kadir, M.R. et al. Effect of Ferrule Height and Post Length on Mechanical Stress and Displacement of Endodontically Treated Maxillary Central Incisor: A Finite Element Analysis. J. Med. Biol. Eng. 37, 336–344 (2017). https://doi.org/10.1007/s40846-017-0227-3

Download citation

Keywords

  • Ferrule height
  • Post length
  • Endodontics
  • Stress
  • Displacement
  • Finite element analysis