In-vivo Elongation Patterns of the Anteromedial and Posterolateral Bundles of the ACL at Low Flexion Angles

Abstract

The kinematics of the anteromedial (AM) and posterolateral (PL) bundles of the anterior cruciate ligament (ACL) in hyperextension was not well understood. This study investigated elongations of the two bundles in hyperextended knee. Twenty living knees were CT-scanned and fluoroscopy-imaged during a weight-bearing flexion–extension cycle from hyperextension to maximal flexion. The knee positions and the relative elongations of the two bundles were reproduced along the motion path using a combined fluoroscopic imaging and CT modeling technique. Results showed the elongation patterns of the two bundles were distinctively different (p < 0.01). The elongation of the PL bundle was slightly higher than that of the AM bundle at hyperextension and then decreased sharply with flexion. The elongation of the AM bundle was highest between the full extension and 10° flexion, and then decreased gradually with flexion angles. In every 10° from hyperextension to 30° flexion, the increasing rates of the PL bundle elongation were significantly higher than those of the AM bundle (p < 0.01). These data may provide important implications for selection of knee flexion angles for fixation of the AM and PL graft bundles in an anatomic ACL reconstruction that can help prevent over-stretching of the graft and reduce the risk of graft failure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Seon, J. K., Gadikota, H. R., Wu, J. L., Sutton, K., Gill, T. J., & Li, G. (2010). Comparison of single- and double-bundle anterior cruciate ligament reconstructions in restoration of knee kinematics and anterior cruciate ligament forces. American Journal of Sports Medicine, 38, 1359–1367.

    Article  Google Scholar 

  2. 2.

    Kondo, E., Merican, A. M., Yasuda, K., & Amis, A. A. (2010). Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: Anatomic double bundle versus single bundle. American Journal of Sports Medicine, 38, 1349–1358.

    Article  Google Scholar 

  3. 3.

    Musahl, V., Voos, J. E., O’Loughlin, P. F., Choi, D., Stueber, V., Kendoff, D., et al. (2010). Comparing stability of different single- and double-bundle anterior cruciate ligament reconstruction techniques: A cadaveric study using navigation. Arthroscopy, 26, S41–S48.

    Article  Google Scholar 

  4. 4.

    Hemmerich, A., van der Merwe, W., Batterham, M., & Vaughan, C. L. (2011). Knee rotational laxity in a randomized comparison of single- versus double-bundle anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 39, 48–56.

    Article  Google Scholar 

  5. 5.

    Kondo, E., & Yasuda, K. (2007). Second-look arthroscopic evaluations of anatomic double-bundle anterior cruciate ligament reconstruction: Relation with postoperative knee stability. Arthroscopy, 23, 1198–1209.

    Article  Google Scholar 

  6. 6.

    Otsubo, H., Shino, K., Nakamura, N., Nakata, K., Nakagawa, S., & Koyanagi, M. (2007). Arthroscopic evaluation of ACL grafts reconstructed with the anatomical two-bundle technique using hamstring tendon autograft. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 720–728.

    Article  Google Scholar 

  7. 7.

    Ahn, J. H., Choi, S. H., Wang, J. H., Yoo, J. C., Yim, H. S., & Chang, M. J. (2011). Outcomes and second-look arthroscopic evaluation after double-bundle anterior cruciate ligament reconstruction with use of a single tibial tunnel. Journal of Bone and Joint Surgery, 93, 1865–1872. American Volume.

    Article  Google Scholar 

  8. 8.

    Ohsawa, T., Kimura, M., Hagiwara, K., Yorifuji, H., & Takagishi, K. (2012). Clinical and second-look arthroscopic study comparing 2 tibial landmarks for tunnel insertions during double-bundle ACL reconstruction with a minimum 2-year follow-up. American Journal of Sports Medicine, 40, 2479–2486.

    Article  Google Scholar 

  9. 9.

    Xu, Y., Ao, Y. F., Wang, J. Q., & Cui, G. Q. (2014). Prospective randomized comparison of anatomic single- and double-bundle anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 308–316.

    Article  Google Scholar 

  10. 10.

    Markolf, K. L., Park, S., Jackson, S. R., & McAllister, D. R. (2009). Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions. Journal of Bone and Joint Surgery, 91, 107–118. American Volume.

    Article  Google Scholar 

  11. 11.

    Amis, A. A., & Dawkins, G. P. (1991). Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. Journal of Bone and Joint Surgery, 73, 260–267. British Volume.

    Google Scholar 

  12. 12.

    Sakane, M., Fox, R. J., Woo, S. L., Livesay, G. A., Li, G., & Fu, F. H. (1997). In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research, 15, 285–293.

    Article  Google Scholar 

  13. 13.

    Bach, J. M., Hull, M. L., & Patterson, H. A. (1997). Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. Journal of Biomechanics, 30, 281–283.

    Article  Google Scholar 

  14. 14.

    Li, G., Rudy, T. W., Sakane, M., Kanamori, A., Ma, C. B., & Woo, S. L. (1999). The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. Journal of Biomechanics, 32, 395–400.

    Article  Google Scholar 

  15. 15.

    Gabriel, M. T., Wong, E. K., Woo, S. L., Yagi, M., & Debski, R. E. (2004). Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Journal of Orthopaedic Research, 22, 85–89.

    Article  Google Scholar 

  16. 16.

    Li, G., Defrate, L. E., Rubash, H. E., & Gill, T. J. (2005). In vivo kinematics of the ACL during weight-bearing knee flexion. Journal of Orthopaedic Research, 23, 340–344.

    Article  Google Scholar 

  17. 17.

    Jordan, S. S., DeFrate, L. E., Nha, K. W., Papannagari, R., Gill, T. J., & Li, G. (2007). The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. American Journal of Sports Medicine, 35, 547–554.

    Article  Google Scholar 

  18. 18.

    Yoo, Y. S., Jeong, W. S., Shetty, N. S., Ingham, S. J., Smolinski, P., & Fu, F. (2010). Changes in ACL length at different knee flexion angles: An in vivo biomechanical study. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 292–297.

    Article  Google Scholar 

  19. 19.

    Li, G., Zayontz, S., Most, E., DeFrate, L. E., Suggs, J. F., & Rubash, H. E. (2004). In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: An in vitro investigation. Journal of Orthopaedic Research, 22, 293–297.

    Article  Google Scholar 

  20. 20.

    Li, G., DeFrate, L. E., Sun, H., & Gill, T. J. (2004). In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. American Journal of Sports Medicine, 32, 1415–1420.

    Article  Google Scholar 

  21. 21.

    De Carlo, M. S., & Sell, K. E. (1997). Normative data for range of motion and single-leg hop in high school athletes. Journal of Sport Rehabilitation, 6, 246–255.

    Article  Google Scholar 

  22. 22.

    Shelbourne, K. D., & Gray, T. (2009). Minimum 10-year results after anterior cruciate ligament reconstruction: How the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. American Journal of Sports Medicine, 37, 471–480.

    Article  Google Scholar 

  23. 23.

    Kozanek, M., Hosseini, A., Liu, F., Van de Velde, S. K., Gill, T. J., Rubash, H. E., et al. (2009). Tibiofemoral kinematics and condylar motion during the stance phase of gait. Journal of Biomechanics, 42, 1877–1884.

    Article  Google Scholar 

  24. 24.

    Shelbourne, K. D., Freeman, H., & Gray, T. (2012). Osteoarthritis after anterior cruciate ligament reconstruction: the importance of regaining and maintaining full range of motion. Sports Health: A Multidisciplinary Approach, 4, 79–85.

    Article  Google Scholar 

  25. 25.

    Ferretti, M., Ekdahl, M., Shen, W., & Fu, F. H. (2007). Osseous landmarks of the femoral attachment of the anterior cruciate ligament: An anatomic study. Arthroscopy, 23, 1218–1225.

    Article  Google Scholar 

  26. 26.

    Purnell, M. L., Larson, A. I., & Clancy, W. (2008). Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. American Journal of Sports Medicine, 36, 2083–2090.

    Article  Google Scholar 

  27. 27.

    Berg, E. E. (1993). Parsons’ knob (tuberculum intercondylare tertium). A guide to tibial anterior cruciate ligament insertion. Clinical Orthopaedics and Related Research, 292, 229–231.

    Google Scholar 

  28. 28.

    Tensho, K., Shimodaira, H., Aoki, T., Narita, N., Kato, H., Kakegawa, A., et al. (2014). Bony landmarks of the anterior cruciate ligament tibial footprint: A detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. American Journal of Sports Medicine, 42, 1433–1440.

    Article  Google Scholar 

  29. 29.

    Edwards, A., Bull, A. M., & Amis, A. A. (2007). The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: Part 1: Tibial attachment. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 1414–1421.

    Article  Google Scholar 

  30. 30.

    Siebold, R., Ellert, T., Metz, S., & Metz, J. (2008). Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy, 24, 154–161.

    Article  Google Scholar 

  31. 31.

    Zhu, Z., & Li, G. (2012). An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Computer Methods in Biomechanics and Biomedical Engineering, 15, 1245–1256.

    Article  Google Scholar 

  32. 32.

    Feng, Y., Tsai, T. Y., Li, J. S., Wang, S., Hu, H., Zhang, C., et al. (2015). Motion of the femoral condyles in flexion and extension during a continuous lunge. Journal of Orthopaedic Research, 33, 591–597.

    Article  Google Scholar 

  33. 33.

    Most, E., Axe, J., Rubash, H., & Li, G. (2004). Sensitivity of the knee joint kinematics calculation to selection of flexion axes. Journal of Biomechanics, 37, 1743–1748.

    Article  Google Scholar 

  34. 34.

    Cuomo, P., Rama, K. R., Bull, A. M., & Amis, A. A. (2007). The effects of different tensioning strategies on knee laxity and graft tension after double-bundle anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 35, 2083–2090.

    Article  Google Scholar 

  35. 35.

    Fu, F. H., Shen, W., Starman, J. S., Okeke, N., & Irrgang, J. J. (2008). Primary anatomic double-bundle anterior cruciate ligament reconstruction: A preliminary 2-year prospective study. American Journal of Sports Medicine, 36, 1263–1274.

    Article  Google Scholar 

  36. 36.

    Kinugasa, K., Mae, T., Matsumoto, N., Nakagawa, S., Yoneda, M., & Shino, K. (2011). Effect of patient age on morphology of anterior cruciate ligament grafts at second-look arthroscopy. Arthroscopy, 27, 38–45.

    Article  Google Scholar 

  37. 37.

    Aglietti, P., Giron, F., Buzzi, R., Biddau, F., & Sasso, F. (2004). Anterior cruciate ligament reconstruction: Bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. Journal of Bone & Joint Surgery: American, 86, 2143–2155.

    Article  Google Scholar 

  38. 38.

    Ettinger, M., Petri, M., Guenther, D., Liu, C., Krusche, C., Liodakis, E., et al. (2013). Anatomic double-bundle ACL reconstruction restricts knee extension in knees with hyperextension. Knee Surgery, Sports Traumatology, Arthroscopy, 21, 2057–2062.

    Article  Google Scholar 

  39. 39.

    Mauro, C. S., Irrgang, J. J., Williams, B. A., & Harner, C. D. (2008). Loss of extension following anterior cruciate ligament reconstruction: Analysis of incidence and etiology using IKDC criteria. Arthroscopy, 24, 146–153.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Clinical Specialist Construction Project of China and National Institutes of Health Grant (R01 AR055612).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Tsai, TY., Li, JS. et al. In-vivo Elongation Patterns of the Anteromedial and Posterolateral Bundles of the ACL at Low Flexion Angles. J. Med. Biol. Eng. 37, 321–327 (2017). https://doi.org/10.1007/s40846-017-0225-5

Download citation

Keywords

  • Anterior cruciate ligament (ACL)
  • Elongation
  • Anteromedial (AM)
  • Posterolateral (PL)
  • Hyperextension