Journal of Medical and Biological Engineering

, Volume 37, Issue 2, pp 288–297 | Cite as

A Modeling Study on Inspired CO2 Rebreathing Device for Sleep Apnea Treatment by Means of CFD Analysis and Experiment

  • Mehdi Shokoueinejad
  • Arman Pazouki
  • Jake Levin
  • Fa Wang
  • Chris Fernandez
  • Samuel Rusk
  • Ícaro dos Santos
  • Ashley Mulchrone
  • Jerome Dempsey
  • John G. Webster
Original Article

Abstract

We present the device design, simulation, and measurement results of a therapy device that potentially prevents sleep apnea by slightly increasing inspired CO2 through added dead space (DS). The rationale for treatment of sleep apnea with CO2 manipulation is based on two recently reported premises: (i) preventing transient reductions in PaCO2 will prevent the patient from reaching their apneic threshold, thereby preventing “central” apnea and instabilities in respiratory motor output; and (ii) raising PaCO2 and end-tidal CO2, even by a minimal amount, provides a strong recruitment of upper airway dilator muscles, thereby preventing airway obstruction. We have also provided the simulation results, obtained from solving the Navier–Stokes (NS) equations within the device volume. Therein, the NS equations are coupled with a convection–diffusion equation that represents the transport of CO2 in the device, thus enabling the transient simulation of CO2 propagation. Using this procedure, a prototype of variable volume dead space reservoir device was designed. Volumetric factors influencing carbon dioxide increases in the added reservoir (open-ended DS) were investigated. The maximum/minimum amount of CO2 concentration were obtained for the maximum/minimum device volume; 3.4 and 2.4 mol/m3 for the DS volumes of 1.2 and 0.5 × 10−3 m3, respectively. In all case studies, the CO2 buildup reached a plateau after approximately 20 breathing cycles. The experimental measurement results are in agreement with the simulation and numerical results obtained using the proposed simplified modeling technique, with a maximum relative error of 3.5%.

Keywords

Sleep apnea Inspired carbon dioxide CO2 Computational fluid dynamics Transport of diluted species 

Abbreviation

PaCO2

Atrial Pressure of Carbon Dioxide in Arterial Blood

PETCO2

End tidal CO2

\(\varvec{x}_{{\varvec{O}_{2}}}\)

Concentration of O2

\(\varvec{x}_{{\varvec{CO}_{2}}}\)

Concentration of CO2

\(\varvec{x}_{{\varvec{O}_{2},1}}\)

Chamber O2 concentration before inhale

\(\varvec{x}_{{\varvec{O}_{2},2}}\)

Chamber O2 concentration after inhale

\(\varvec{x}_{{\varvec{O}_{2},3}}\)

Chamber O2 concentration after exhale

\(\varvec{x}_{{\varvec{O}_{2},\varvec{in}}}\)

Inlet air O2 concentration

\(\varvec{x}_{{\varvec{CO}_{2},2}}\)

Average CO2 concentration after inhale

\(\varvec{y}_{{\varvec{O}_{2},1}}\)

Average inhale air O2 concentration

\(\varvec{y}_{{\varvec{O}_{2},2}}\)

Average exhale air O2 concentration

\(\varvec{c}_{{{\mathbf{n}},1}}^{{{\mathbf{ave}}}}\)

Average CO2 concentration after inhale where n is the breathing cycle number

\(\varvec{c}_{{{\mathbf{n}},2}}^{{{\mathbf{ave}}}}\)

Average CO2 concentration after exhale in nth breathing cycle

\(\varvec{v}_{\varvec{b}}\)

Air velocity at the inlet boundary

TV

Tidal Volume

RV

Reservoir Volume

\({\boldsymbol{\gamma}}\)

Main reason to introduce \({\boldsymbol{\gamma}}\) in the equations is to (i) account for imperfect mixing in small volume, e.g. due to undeveloped flow and (ii) account for any unforeseen parameter that can affect the mixing of CO2 and fresh air

References

  1. 1.
    Peppard, P. E., Young, T., Barnet, J. H., Palta, M., Hagen, E. W., & Hla, K. M. (2013). Increased prevalence of sleep-disordered breathing in adults. American Journal of Epidemiology, 177(9), 1006–1014.CrossRefGoogle Scholar
  2. 2.
    Mulchrone, A., Shokoueinejad, M., & Webster, J. (2016). A review of preventing central sleep apnea by inspired CO2. Physiological Measurement, 37(5), R36.CrossRefGoogle Scholar
  3. 3.
    Berssenbrugge, A., Dempsey, J., Iber, C., Skatrud, J., & Wilson, P. (1983). Mechanisms of hypoxia-induced periodic breathing during sleep in humans. The Journal of Physiology, 343, 507.CrossRefGoogle Scholar
  4. 4.
    Badr, M. S., Grossman, J. E., & Weber, S. A. (1994). Treatment of refractory sleep apnea with supplemental carbon dioxide. American Journal of Respiratory and Critical Care Medicine, 150(2), 561–564.CrossRefGoogle Scholar
  5. 5.
    Lorenzi-Filho, G., Rankin, F., Bies, I., & Bradley, T. D. (1999). Effects of inhaled carbon dioxide and oxygen on Cheyne–Stokes respiration in patients with heart failure. American Journal of Respiratory and Critical Care Medicine, 159(5), 1490–1498.CrossRefGoogle Scholar
  6. 6.
    Steens, R. D., Millar, T. W., Su, X., Biberdorf, D., Buckle, P., Ahmed, M., et al. (1994). Effect of inhaled 3% CO2 on Cheyne-Stokes respiration in congestive heart failure. Sleep, 17(1), 61–68.Google Scholar
  7. 7.
    Xie, A., Rankin, F., Rutherford, R., & Bradley, T. D. (1997). Effects of inhaled CO2 and added dead space on idiopathic central sleep apnea. Journal of Applied Physiology, 82(3), 918–926.Google Scholar
  8. 8.
    Xie, A., Teodorescu, M., Pegelow, D. F., Teodorescu, M. C., Gong, Y., Fedie, J. E., et al. (2013). Effects of stabilizing or increasing respiratory motor outputs on obstructive sleep apnea. Journal of Applied Physiology, 115(1), 22–33.CrossRefGoogle Scholar
  9. 9.
    Eckert, D. J., White, D. P., Jordan, A. S., Malhotra, A., & Wellman, A. (2013). Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. American Journal of Respiratory and Critical Care Medicine, 188(8), 996–1004. doi:10.1164/rccm.201303-0448OC.CrossRefGoogle Scholar
  10. 10.
    Dempsey, J. A., Xie, A., Patz, D. S., & Wang, D. (2014). Physiology in medicine: Obstructive sleep apnea pathogenesis and treatment–considerations beyond airway anatomy. Journal of Applied Physiology (1985), 116(1), 3–12. doi:10.1152/japplphysiol.01054.2013.CrossRefGoogle Scholar
  11. 11.
    Skatrud, J. B., & Dempsey, J. A. (1983). Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(3), 813–822.Google Scholar
  12. 12.
    Iber, C., Davies, S. F., Chapman, R. C., & Mahowald, M. M. (1986). A possible mechanism for mixed apnea in obstructive sleep apnea. Chest, 89(6), 800–805.CrossRefGoogle Scholar
  13. 13.
    Berssenbrugge, A., Dempsey, J., Iber, C., Skatrud, J., & Wilson, P. (1983). Mechanisms of hypoxia-induced periodic breathing during sleep in humans. Journal of Physiology, 343, 507–524.CrossRefGoogle Scholar
  14. 14.
    Sankari, A., Bascom, A. T., Chowdhuri, S., & Badr, M. S. (2014). Tetraplegia is a risk factor for central sleep apnea. Journal of Applied Physiology (1985), 116(3), 345–353. doi:10.1152/japplphysiol.00731.2013.CrossRefGoogle Scholar
  15. 15.
    Khayat, R. N., Xie, A., Patel, A. K., Kaminski, A., & Skatrud, J. B. (2003). Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest, 123(5), 1551–1560.CrossRefGoogle Scholar
  16. 16.
    Xie, A., Rankin, F., Rutherford, R., & Bradley, T. D. (1997). Effects of inhaled CO2 and added dead space on idiopathic central sleep apnea. Journal of Applied Physiology (1985), 82(3), 918–926.Google Scholar
  17. 17.
    Lorenzi-Filho, G., Rankin, F., Bies, I., & Douglas Bradley, T. (1999). Effects of inhaled carbon dioxide and oxygen on cheyne-stokes respiration in patients with heart failure. American Journal of Respiratory and Critical Care Medicine, 159(5 Pt 1), 1490–1498. doi:10.1164/ajrccm.159.5.9810040.CrossRefGoogle Scholar
  18. 18.
    Haxhiu, M. A., van Lunteren, E., Mitra, J., & Cherniack, N. S. (1987). Comparison of the response of diaphragm and upper airway dilating muscle activity in sleeping cats. Respiration Physiology, 70(2), 183–193.CrossRefGoogle Scholar
  19. 19.
    Horner, R. L., Liu, X., Gill, H., Nolan, P., Liu, H., & Sood, S. (2002). Effects of sleep-wake state on the genioglossus vs.diaphragm muscle response to CO(2) in rats. Journal of Applied Physiology (1985), 92(2), 878–887. doi:10.1152/japplphysiol.00855.2001.CrossRefGoogle Scholar
  20. 20.
    Szollosi, I., Jones, M., Morrell, M., Helfet, K., Coats, A., & Simonds, A. (2004). Effect of CO2 inhalation on central sleep apnea and arousals from sleep. Respiration, 71(5), 493–498.CrossRefGoogle Scholar
  21. 21.
    Andreas, S., Weidel, K., Hagenah, G., & Heindl, S. (1998). Treatment of Cheyne-Stokes respiration with nasal oxygen and carbon dioxide. European Respiratory Journal, 12(2), 414–419.CrossRefGoogle Scholar
  22. 22.
    Khayat, R. N., Xie, A., Patel, A. K., Kaminski, A., & Skatrud, J. B. (2003). Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. CHEST Journal, 123(5), 1551–1560.CrossRefGoogle Scholar
  23. 23.
    Xie, A., Skatrud, J. B., & Dempsey, J. A. (2001). Effect of hypoxia on the hypopnoeic and apnoeic threshold for CO2 in sleeping humans. The Journal of Physiology, 535(1), 269–278.CrossRefGoogle Scholar
  24. 24.
    Skadberg, B., Oterhals, Å., Finborud, K., & Markestad, T. (1995). CO2 rebreathing: A possible contributory factor to some cases of sudden infant death? Acta Paediatrica, 84(9), 988–995.CrossRefGoogle Scholar
  25. 25.
    Webster, J., dos Santos, I., Shokoueinejad, M., Levin, J., Dempsey, J., Wang, F., et al. (2016). Sleep apnea therapy device that automatically adjusts the fraction of inspired carbon dioxide. US Patent 15/376,180.Google Scholar
  26. 26.
    Stocker, T. (2011). Introduction to climate modelling. New York: Springer.CrossRefGoogle Scholar
  27. 27.
    Marrero, T. R., & Mason, E. A. (1972). Gaseous diffusion coefficients. Journal of Physical and Chemical Reference Data, 1(1), 3–118.CrossRefGoogle Scholar
  28. 28.
    Comsol. (2011). COMSOL multiphysics: Version 4.2. Burlington, MA: Comsol.Google Scholar
  29. 29.
    Nunn, A., & Gregg, I. (1989). New regression equations for predicting peak expiratory flow in adults. BMJ, 298(6680), 1068–1070.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2017

Authors and Affiliations

  • Mehdi Shokoueinejad
    • 1
    • 4
  • Arman Pazouki
    • 2
  • Jake Levin
    • 1
  • Fa Wang
    • 3
  • Chris Fernandez
    • 1
  • Samuel Rusk
    • 3
  • Ícaro dos Santos
    • 1
  • Ashley Mulchrone
    • 1
  • Jerome Dempsey
    • 4
  • John G. Webster
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mechanical EngineeringCalifornia State UniversityLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.The John Rankin Laboratory of Pulmonary Medicine, Medical Sciences CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations