Skip to main content

Advertisement

Log in

Static Magnetic Field Increases Survival Rate of Thawed RBCs Frozen in DMSO-Free Solution

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The most commonly used cryoprotectant for cells and tissues is dimethyl sulfoxide (DMSO). However, the cytotoxic effect of DMSO is a concern when high concentrations are used. The aim of this study was to assess the cryoprotective effects of static magnetic fields (SMFs) on human red blood cells (RBCs) during cryopreservation. Before the freezing process, RBCs were suspended in media containing 0, 7.5, or 15% DMSO. Then, samples were frozen at −80 °C with a 0.4-T SMF for 24 h. After the cells were thawed, the survival rate, morphology, and mechanical stability of cellular membranes were examined. The results show that SMFs exhibit the largest cryoprotective efficiency when DMSO was not present in the freezing medium. In addition, cell morphology and membrane stability of the frozen-thawed RBCs were not changed after 0.4-T SMF treatment. These results demonstrate that SMFs increase the survival rate of thawed RBCs frozen in a DMSO-free medium. Accordingly, SMF exposure during the freezing process improved the cryopreservation efficiency of RBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meryman, H. T. (2007). Cryopreservation of living cells: Principles and practice. Transfusion, 47, 935–945.

    Article  Google Scholar 

  2. Sumida, S. (2006). Transfusion and transplantation of cryopreserved cells and tissues. Cell Tissue Bank, 7, 265–305.

    Article  Google Scholar 

  3. Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F., & Crowe, J. H. (1987). Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology, 24, 324–331.

    Article  Google Scholar 

  4. Anchordoguy, T. J., Cecchini, C. A., Crowe, J. H., & Crowe, L. M. (1991). Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology, 28, 467–473.

    Article  Google Scholar 

  5. Davis, J. M., Rowley, S. D., Braine, H. G., Piantadosi, S., & Santos, G. W. (1990). Clinical toxicity of cryopreserved bone marrow graft infusion. Blood, 75, 781–786.

    Google Scholar 

  6. Fahy, G. M., Lilley, T. H., & Linsdell, H. (1990). Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiology, 27, 247–268.

    Article  Google Scholar 

  7. Hubel, A. (1997). Parameters of cell freezing: implications for the cryopreservation of stem cells. Transfusion Medicine Reviews, 11, 224–233.

    Article  Google Scholar 

  8. Meryman, H. T., & Hornblower, M. (1975). A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion, 12, 145–156.

    Article  Google Scholar 

  9. Quan, G. B., Han, Y., Liu, M. X., Fang, L., Du, W., Ren, S. P., et al. (2011). Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose. Cryobiology, 62, 135–144.

    Article  Google Scholar 

  10. Lynch, A. L., & Slater, N. K. (2011). Influence of intracellular trehalose concentration and pre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes. Cryobiology, 63, 26–31.

    Article  Google Scholar 

  11. Lynch, A. L., Chen, R., Dominowski, P. J., Shalaev, E. Y., Yancey, R. J., Jr., & Slater, N. K. (2010). Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials, 31, 6096–6103.

    Article  Google Scholar 

  12. Kaku, M., Kamada, H., Kawata, T., Koseki, H., Abedini, S., Kojima, S., et al. (2010). Cryopreservation of periodontal ligament cells with magnetic field for teeth banking. Cryobiology, 61, 73–78.

    Article  Google Scholar 

  13. Lee, S. Y., Huang, G. W., Shiung, J. N., Huang, Y. H., Jeng, J. H., Kuo, T. F., et al. (2012). ”Magnetic cryopreservation for dental pulp stem cells”. Cells Tissues Organs, 196, 23–33.

    Article  Google Scholar 

  14. Lin, C. Y., Chang, W. J., Lee, S. Y., Feng, S. W., Lin, C. T., Fan, K. S., et al. (2013). Influence of a static magnetic field on the slow freezing of human erythrocytes. International Journal of Radiation Biology, 89, 51–56.

    Article  Google Scholar 

  15. Lin, C. Y., Wei, P. L., Chang, W. J., Huang, Y. K., Feng, S. W., Lin, C. T., et al. (2013). Slow freezing coupled static magnetic field exposure enhances cryopreservative efficiency—A study on human erythrocytes. PLoS ONE, 8, e58988. doi:10.1371/journal.pone.0058988.

    Article  Google Scholar 

  16. Kawata, T., Abedini, S., Kaku, M., Koseki, H., Kojima, S., Sumi, H., et al. (2012). Effects of DMSO (Dimethyl sulfoxide) free cryopreservation with program freezing using a magnetic field on periodontal ligament cells and dental pulp tissues. Biomedical Research, 23, 438–443.

    Google Scholar 

  17. Huang, H. M., Lee, S. Y., Yao, W. C., Lin, C. T., & Yeh, C. Y. (2006). Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clinical Orthopaedics and Related Research, 447, 201–208.

    Article  Google Scholar 

  18. Tiburu, E. K., Moton, D. M., & Lorigan, G. A. (2001). Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta, 1512, 206–214.

    Article  Google Scholar 

  19. Lande, M. B., Donovan, J. M., & Zeidel, M. L. (1995). The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. Journal of General Physiology, 106, 67–84.

    Article  Google Scholar 

  20. Alonso, A., Meirelles, N. C., Yushmanov, V. E., & Tabak, M. (1996). Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical resistance properties. Journal of Investigative Dermatology, 106, 1058–1063.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan (103TMU-WFH-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haw-Ming Huang.

Additional information

Yi-June Lo and Yu-Hwa Pan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, YJ., Pan, YH., Lin, CY. et al. Static Magnetic Field Increases Survival Rate of Thawed RBCs Frozen in DMSO-Free Solution. J. Med. Biol. Eng. 37, 157–161 (2017). https://doi.org/10.1007/s40846-016-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0195-z

Keywords

Navigation