Journal of Medical and Biological Engineering

, Volume 36, Issue 4, pp 495–505

Factorial Analysis of Variables Influencing Mechanical Characteristics in Le Fort I Osteotomy Using FEA and Statistics-Based Taguchi Method

Original Article
  • 66 Downloads

Abstract

This study investigated the Le Fort I osteotomy biomedical interactions for multi-factorial parameters (bone healing situation, cortical bone thickness, mini-plate fixation type, and screw length) under oblique load conditions using a nonlinear finite element (FE) approach. Nonlinear FE analysis was used to simulate the screw/plate and plate/bone and the bone healing adaptations with osseous nonunion in Le Fort I osteotomy models. The Taguchi method was used to identify the importance of each parameter and determine an optimal biomechanical response. With respect to relative micro-movement between the two bone segments and the magnitude of the stress values in the mini-plates, the bone healing situation had the dominant effect. The main effect plot showed that osseous nonunion increased the micro-movements and mini-plate stress values. Cortical bone thickness, mini-plate fixation type and screw length did not significantly affect the micro-movement and stress values. The combined use of FE analysis and the Taguchi method facilitated effective Le Fort I osteotomy mechanical characteristics evaluation.

Keywords

Le Fort I osteotomy Finite element Taguchi Bone healing 

References

  1. 1.
    Ataç, M. S., Erkmen, E., Yücel, E., & Kurt, A. (2008). Comparison of biomechanical behaviour of maxilla following Le Fort I osteotomy with 2-versus 4-plate fixation using 3D-FEA. Part 1: Advancement surgery. International Journal of Oral and Maxillofacial Surgery, 37(12), 1117–1124.CrossRefGoogle Scholar
  2. 2.
    Bothur, S., Blomqvist, J. E., & Isaksson, S. (1998). Stability of Le Fort I osteotomy with advancement: A comparison of single maxillary surgery and a two-jaw procedure. Journal of Oral and Maxillofacial Surgery, 56(9), 1029–1033.CrossRefGoogle Scholar
  3. 3.
    Luyk, N. H., & Ward-Booth, R. P. (1985). The stability of Le Fort I advancement osteotomies using bone plates without bone grafts. Journal of maxillofacial surgery, 13, 250–253.CrossRefGoogle Scholar
  4. 4.
    Egbert, M., Hepworth, B., Myall, R., & West, R. (1995). Stability of Le Fort I osteotomy with maxillary advancement: A comparison of combined wire fixation and rigid fixation. Journal of Oral and Maxillofacial Surgery, 53(3), 243–248.CrossRefGoogle Scholar
  5. 5.
    Wang, H., Chen, M. S., Fan, Y. B., Tang, W., & Tian, W. D. (2007). Biomechanical evaluation of Le Fort I maxillary fracture plating techniques. Journal of Oral and Maxillofacial Surgery, 65(6), 1109–1116.CrossRefGoogle Scholar
  6. 6.
    Mosbah, M. R., Oloyede, D., Koppel, D. A., Moos, K. F., & Stenhouse, D. (2003). Miniplate removal in trauma and orthognathic surgery—A retrospective study. International Journal of Oral and Maxillofacial Surgery, 32(2), 148–151.CrossRefGoogle Scholar
  7. 7.
    Bell, W. H., & Levy, B. M. (1969). Revascularization and bone healing after posterior maxillary osteotomy. Journal of Oral Surgery (American Dental Association: 1965), 27(4), 249–255.Google Scholar
  8. 8.
    Bell, W. H., & Levy, B. M. (1971). Revascularization and bone healing after posterior maxillary osteotomy. Journal of Oral Surgery (American Dental Association: 1965), 29(5), 313–320.Google Scholar
  9. 9.
    Bell, W. H., Fonseca, R. J., Kenneky, J. W., & Levy, B. M. (1975). Bone healing and revascularization after total maxillary osteotomy. Journal of Oral Surgery (American Dental Association: 1965), 33(4), 253–260.Google Scholar
  10. 10.
    Ueki, K., Miyazaki, M., Okabe, K., Mukozawa, A., Marukawa, K., Moroi, A., et al. (2011). Assessment of bone healing after Le Fort I osteotomy with 3-dimensional computed tomography. Journal of Cranio-Maxillofacial Surgery, 39(4), 237–243.CrossRefGoogle Scholar
  11. 11.
    Compton, J. E., Jacobs, J. D., & Dunsworth, A. R. (1984). Healing of the bone incision following Le Fort I osteotomy. Journal of Oral and Maxillofacial Surgery, 42(10), 665–667.CrossRefGoogle Scholar
  12. 12.
    Yu, J. H., Lin, Y. S., Chang, W. J., Chang, Y. Z., & Lin, C. L. (2014). Mechanical effects of micro-thread orthodontic mini-screw design on artificial cortical bone. Journal of Medical and Biological Engineering, 34(1), 49–55.CrossRefGoogle Scholar
  13. 13.
    Miyamoto, I., Tsuboi, Y., Wada, E., Suwa, H., & Iizuka, T. (2005). Influence of cortical bone thickness and implant length on implant stability at the time of surgery—Clinical, prospective, biomechanical, and imaging study. Bone, 37(6), 776–780.CrossRefGoogle Scholar
  14. 14.
    Katranji, A., Misch, K., & Wang, H. L. (2007). Cortical bone thickness in dentate and edentulous human cadavers. Journal of Periodontology, 78(5), 874–878.CrossRefGoogle Scholar
  15. 15.
    Alberts, L. R., Phillips, K. O., Tu, H. K., Stinson, W. W., & Friedman, A. (2003). A biologic model for assessment of osseous strain patterns and plating systems in the human maxilla. Journal of Oral and Maxillofacial Surgery, 61(1), 79–88.CrossRefGoogle Scholar
  16. 16.
    Lin, C. L., Chang, W. J., Lin, Y. S., Chang, Y. H., & Lin, Y. F. (2009). Evaluation of the relative contributions of multi-factors in an adhesive MOD restoration using FEA and the Taguchi method. Dental Materials, 25(9), 1073–1081.CrossRefGoogle Scholar
  17. 17.
    Lin, C. L., Chang, S. H., Chang, W. J., & Kuo, Y. C. (2007). Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based Taguchi method. European Journal of Oral Sciences, 115(5), 408–416.CrossRefGoogle Scholar
  18. 18.
    Phadke, M. S. (1995). Quality engineering using robust design. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  19. 19.
    Akça, K., Çehreli, M. C., & İplikçioğlu, H. (2003). Evaluation of the mechanical characteristics of the implant–abutment complex of a reduced-diameter morse-taper implant. Clinical Oral Implants Research, 14(4), 444–454.CrossRefGoogle Scholar
  20. 20.
    Dar, F. H., Meakin, J. R., & Aspden, R. M. (2002). Statistical methods in finite element analysis. Journal of Biomechanics, 35(9), 1155–1161.CrossRefGoogle Scholar
  21. 21.
    White, R. P., & Sarver, D. M. (2003). Contemporary treatment of dentofacial deformity (pp. 298–299). St Louis, MO: Mosby.Google Scholar
  22. 22.
    Holmes, R. E., Wardrop, R. W., & Wolford, L. M. (1988). Hydroxylapatite as a bone graft substitute in orthognathic surgery: Histologic and histometric findings. Journal of Oral and Maxillofacial Surgery, 46(8), 661–671.CrossRefGoogle Scholar
  23. 23.
    Ueki, K., Marukawa, K., Shimada, M., Nakagawa, K., Alam, S., & Yamamoto, E. (2006). Maxillary stability following Le Fort I osteotomy in combination with sagittal split ramus osteotomy and intraoral vertical ramus osteotomy: A comparative study between titanium miniplate and poly-l-lactic acid plate. Journal of Oral and Maxillofacial Surgery, 64(1), 74–80.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Department of Plastic and Reconstructive SurgeryChang Gung Memorial HospitalTaoyuanTaiwan

Personalised recommendations