Journal of Medical and Biological Engineering

, Volume 36, Issue 1, pp 62–70

A Clinical and Kinematical Evaluation of Trajectory Planning Software for Posterior Atlantoaxial Transarticular Screw Fixation Surgery

  • Andy Chien
  • Yao-Hung Wang
  • Dar-Ming Lai
  • Ying-Sian Chen
  • Wen-Kai Chou
  • Been-Der Yang
  • Jaw-Lin Wang
Original Article
  • 63 Downloads

Abstract

Atlantoaxial instability is a progressive cervical spine condition that often requires surgical intervention. The posterior C1-2 transarticular fixation has been a great advancement for the management of atlantoaxial instability as it provides improved biomechanical stability. However, the surgical risks of serious neurovascular injury associated with this technique remain an obstacle for its wider adoption. The goal of this study is to evaluate the surgical outcome of C1-2 transarticular screw fixation utilizing a lab-designed trajectory planning software (TPS) system and to investigate the likely kinematical impact of deviated screw trajectory. The TPS system was applied to 19 patients (mean age: 61.1 years, range: 35–71 years; 14 males and 5 females) that underwent C1-2 transarticular fixation at our institution. A total of 32 transarticular screws were inserted. Pre-operative computed tomography images were used to render a three-dimensional bone tissue model as well as the corresponding multi-planar digitally reconstructed radiographs. The pre- and post-operative positions of C1 and C2 were also compared. Overall, only one malpositioned screw was identified and no major complications occurred for any of the patients. A comparison of the planned and actual screw insertion trajectories indicated that the vertical angle was the only parameter to have a statistically significant difference. Moderate negative correlation was found between the vertical entry point and the vertical angle, and moderate positive correlation was found between the horizontal entry point and the horizontal angle. The TPS system is a cost-effective clinical implementation that can potentially reduce the associated complication rates for C1-2 transarticular fixation. The system should be viewed as a useful assistive device as well as a potential training and auditing tool for institutions where more expensive navigational systems are not readily available.

Keywords

Atlantoaxial joint Computer-assisted surgery C1-2 transarticular screw fixation Posterior instrumentation Cervical spine 

References

  1. 1.
    Sunahara, N., Matsunaga, S., Mori, T., Ijiri, K., & Sakou, T. (1997). Clinical course of conservatively managed rheumatoid arthritis patients with myelopathy. Spine (Phila Pa 1976), 22(22), 2603–2607; discussion 2608.Google Scholar
  2. 2.
    Matsunaga, S., Sakou, T., Onishi, T., Hayashi, K., Taketomi, E., Sunahara, N., et al. (2003). Prognosis of patients with upper cervical lesions caused by rheumatoid arthritis: comparison of occipitocervical fusion between C1 laminectomy and nonsurgical management. Spine (Phila Pa 1976), 28(14), 1581–1587; discussion 1587.Google Scholar
  3. 3.
    Omura, K., Hukuda, S., Katsuura, A., Saruhashi, Y., Imanaka, T., & Imai, S. (2002). Evaluation of posterior long fusion versus conservative treatment for the progressive rheumatoid cervical spine. Spine (Phila Pa 1976), 27(12), 1336–1345.CrossRefGoogle Scholar
  4. 4.
    Magerl, F., & Seemann, P. S. (1987). Stable posterior fusion of the atlas and axis by transarticular screw fixation. In P. Kehr & A. Weidner (Eds.), Cervical spine I: strasbourg 1985 (pp. 322–327). New York: Springer Vienna.CrossRefGoogle Scholar
  5. 5.
    Farey, I. D., Nadkarni, S., & Smith, N. (1999). Modified Gallie technique versus transarticular screw fixation in C1-C2 fusion. Clinical Orthopaedics and Related Research, 359, 126–135.CrossRefGoogle Scholar
  6. 6.
    Grob, D., Crisco, J. J, I. I. I., Panjabi, M. M., Wang, P., & Dvorak, J. (1992). Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine (Phila Pa 1976), 17(5), 480–490.CrossRefGoogle Scholar
  7. 7.
    Paramore, C. G., Dickman, C. A., & Sonntag, V. K. (1996). The anatomical suitability of the C1-2 complex for transarticular screw fixation. Journal of Neurosurgery, 85(2), 221–224. doi:10.3171/jns.1996.85.2.0221.CrossRefGoogle Scholar
  8. 8.
    Vergara, P., Bal, J. S., Hickman Casey, A. T., Crockard, H. A., & Choi, D. (2012). C1-C2 posterior fixation: are 4 screws better than 2? Neurosurgery, 71(1 Suppl Operative), 86–95. doi:10.1227/NEU.0b013e318243180a.Google Scholar
  9. 9.
    Jacobson, M. E., Khan, S. N., & An, H. S. (2012). C1-C2 posterior fixation: indications, technique, and results. Orthopedic Clinics of North America, 43(1), 11–18, vii, doi:10.1016/j.ocl.2011.09.004.
  10. 10.
    Liu, G., Xu, R., Ma, W., Sun, S., & Feng, J. (2011). Anatomical considerations for the placement of cervical transarticular screws. Journal of Neurosurgery: Spine, 14(1), 114–121. doi:10.3171/2010.9.spine1066.Google Scholar
  11. 11.
    Nolte, L. P., Zamorano, L. J., Jiang, Z., Wang, Q., Langlotz, F., & Berlemann, U. (1995). Image-guided insertion of transpedicular screws. A laboratory set-up. Spine (Phila Pa 1976), 20(4), 497–500.CrossRefGoogle Scholar
  12. 12.
    Amiot, L. P., Labelle, H., DeGuise, J. A., Sati, M., Brodeur, P., & Rivard, C. H. (1995). Computer-assisted pedicle screw fixation. A feasibility study. Spine (Phila Pa 1976), 20(10), 1208–1212.CrossRefGoogle Scholar
  13. 13.
    Uehara, M., Takahashi, J., Hirabayashi, H., Hashidate, H., Ogihara, N., Mukaiyama, K., et al. (2012). Computer-assisted C1-C2 transarticular screw fixation “Magerl Technique” for atlantoaxial instability. Asian Spine Journal, 6(3), 168–177. doi:10.4184/asj.2012.6.3.168.CrossRefGoogle Scholar
  14. 14.
    Currier, B. L., Maus, T. P., Eck, J. C., Larson, D. R., & Yaszemski, M. J. (2008). Relationship of the internal carotid artery to the anterior aspect of the C1 vertebra: implications for C1-C2 transarticular and C1 lateral mass fixation. Spine (Phila Pa 1976), 33(6), 635–639. doi:10.1097/BRS.0b013e318166e083.CrossRefGoogle Scholar
  15. 15.
    Madawi, A. A., Casey, A. T., Solanki, G. A., Tuite, G., Veres, R., & Crockard, H. A. (1997). Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. Journal of Neurosurgery, 86(6), 961–968. doi:10.3171/jns.1997.86.6.0961.CrossRefGoogle Scholar
  16. 16.
    Elliott, R. E., Tanweer, O., Boah, A., Morsi, A., Ma, T., Frempong-Boadu, A., et al. (2012). Atlantoaxial fusion with transarticular screws: meta-analysis and review of the literature. World Neurosurgery,. doi:10.1016/j.wneu.2012.03.012.Google Scholar
  17. 17.
    Weidner, A., Wahler, M., Chiu, S. T., & Ullrich, C. G. (2000). Modification of C1-C2 transarticular screw fixation by image-guided surgery. Spine (Phila Pa 1976), 25(20), 2668–2673; discussion 2674.Google Scholar
  18. 18.
    Van Cleynenbreugel, J., Schutyser, F., Goffin, J., Van Brussel, K., & Suetens, P. (2002). Image-based planning and validation of C1-C2 transarticular screw fixation using personalized drill guides. Comput Aided Surgery, 7(1), 41–48. doi:10.1002/igs.10027.CrossRefGoogle Scholar
  19. 19.
    Stemper, B. D., Yoganandan, N., & Pintar, F. A. (2004). Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury. Spine (Phila Pa 1976), 29(16), 1764–1771.CrossRefGoogle Scholar
  20. 20.
    Wright, N. M., & Lauryssen, C. (1998). Vertebral artery injury in C1-2 transarticular screw fixation: results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. American Association of Neurological Surgeons/Congress of Neurological Surgeons. Journal of Neurosurgery, 88(4), 634–640. doi:10.3171/jns.1998.88.4.0634.CrossRefGoogle Scholar
  21. 21.
    Casey, A. T., Madawi, A. A., Veres, R., & Crockard, H. A. (1997). Is the technique of posterior transarticular screw fixation suitable for rheumatoid atlanto-axial subluxation? British Journal of Neurosurgery, 11(6), 508–519.CrossRefGoogle Scholar
  22. 22.
    Yamazaki, M., Okawa, A., Furuya, T., Sakuma, T., Takahashi, H., Kato, K., et al. (2012). Anomalous vertebral arteries in the extra- and intraosseous regions of the craniovertebral junction visualized by 3-dimensional computed tomographic angiography: analysis of 100 consecutive surgical cases and review of the literature. Spine (Phila Pa 1976), 37(22), E1389–1397. doi:10.1097/BRS.0b013e31826a0c9f.CrossRefGoogle Scholar
  23. 23.
    Bolger, C., & Wigfield, C. (2000). Image-guided surgery: applications to the cervical and thoracic spine and a review of the first 120 procedures. Journal of Neurosurgery: Spine, 92(2 Suppl), 175–180.Google Scholar
  24. 24.
    Kotani, Y., Abumiok, K., Ito, M., & Minami, A. (2003). Improved accuracy of computer-assisted cervical pedicle screw insertion. Journal of Neurosurgery, 99(3 Suppl), 257–263.Google Scholar
  25. 25.
    Gebhard, F., Weidner, A., Liener, U. C., Stockle, U., & Arand, M. (2004). Navigation at the spine. Injury, 35(Suppl 1), S-a35–45. doi:10.1016/j.injury.2004.05.009.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  • Andy Chien
    • 1
    • 2
  • Yao-Hung Wang
    • 2
    • 3
  • Dar-Ming Lai
    • 3
  • Ying-Sian Chen
    • 2
  • Wen-Kai Chou
    • 2
  • Been-Der Yang
    • 2
  • Jaw-Lin Wang
    • 2
  1. 1.Department of Physical Therapy and Graduate Institute of Rehabilitation ScienceMedical UniversityTaichungTaiwan, ROC
  2. 2.Institute of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC
  3. 3.National Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan, ROC

Personalised recommendations