Skip to main content
Log in

Trabecular Bone Morphological Analysis for Preclinical Osteoporosis Application Using Micro Computed Tomography Scanner

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Trabecular bone morphological parameter (TMP) analysis with micro computed tomography (micro-CT) has been used to evaluate the risk of fracture of osteoporosis in small animals. Many researchers have pointed out the drawback of making decisions based on bone mineral density only due to the lack of morphological information. Our study describes the application of a laboratory micro-CT system and a self-designed TMP algorithm combined with two statistical methodological tools for the evaluation of the artificially induced animal model by the ovariectomy (OVX) surgery process. The results show that the percentage bone volume (BV/TV), the trabecular properties thickness (Tb Th ), number (Tb N ), and separation (Tb Sp ) have significant differences between the normal and OVX groups. Tb Th and Tb Sp had very low p-values and are associated with bone loss caused by osteoporosis. The method can be used to early detect osteoporosis to prevent the risk of fracture in aging small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dempster, D. W. (2003). Bone microarchitecture and strength. Osteoporosis International, 14, S54–S56.

    Article  Google Scholar 

  2. Lespessailles, E., Chappard, C., Bonnet, N., & Benhamou, C. L. (2006). Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine, 73, 254–261.

    Article  Google Scholar 

  3. Yu C.-K. (2009). Development and applications of a fully automatic quantitative image analysis system for a home-made micro-computed tomography. Master, Master Thesis of the Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei.

  4. Ulrich, D., van Rietbergen, B., Laib, A., & Ruegsegger, P. (1999). The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 25, 55–60.

    Article  Google Scholar 

  5. Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., et al. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. Journal of Bone and Mineral Research, 2, 595–610.

    Article  Google Scholar 

  6. Hildebrand, T., & Rüegsegger, P. (1997). A new method for the model-independent assessment of thickness in three-dimensional images. Journal of Microscopy, 185, 67–75.

    Article  Google Scholar 

  7. Prior, J. C., Vigna, Y. M., Wark, J. D., Eyre, D. R., Lentle, B. C., Li, D. K., et al. (1997). Premenopausal ovariectomy-related bone loss: A randomized, double-blind, one-year trial of conjugated estrogen or medroxyprogesterone acetate. Journal of Bone and Mineral Research, 12, 1851–1863.

    Article  Google Scholar 

  8. Dalle, Carbonare L., Valenti, M., Bertoldo, F., Zanatta, M., Zenari, S., Realdi, G., et al. (2005). Bone microarchitecture evaluated by histomorphometry. Micron, 36, 609–616.

    Article  Google Scholar 

  9. Lane, N. E., Yao, W., Kinney, J. H., Modin, G., Balooch, M., & Wronski, T. J. (2003). Both hPTH (1–34) and bFGF increase trabecular bone mass in osteopenic rats but they have different effects on trabecular bone architecture. Journal of Bone and Mineral Research, 18, 2105–2115.

    Article  Google Scholar 

  10. Tivesten, Å., Movérare-Skrtic, S., Chagin, A., Venken, K., Salmon, P., Vanderschueren, D., et al. (2004). Additive protective effects of estrogen and androgen treatment on trabecular bone in ovariectomized rats. Journal of Bone and Mineral Research, 19, 1833–1839.

    Article  Google Scholar 

  11. Valentinitsch, A., Patsch, J. M., Deutschmann, J., Schueller-Weidekamm, C., Resch, H., Kainberger, F., & Langs, G. (2012). Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone, 51, 480–487.

    Article  Google Scholar 

  12. Klintström, E., Smedby, Ö., Moreno, R., & Brismar, T. B. (2014). Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data. Skeletal Radiology, 43, 197–204.

    Article  Google Scholar 

  13. Zebaze, R., Ghasem-Zadeh, A., Mbala, A., & Seeman, E. (2013). A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone, 54, 8–20.

    Article  Google Scholar 

  14. Janc, K., Tarasiuk, J., Bonnet, A., & Lipinski, P. (2013). Genetic algorithms as a useful tool for trabecular and cortical bone segmentation. Computer Methods and Programs in Biomedicine, 111, 72–83.

    Article  Google Scholar 

  15. Yu C.-K. & Chen J.-C. (2009). Development and applications of a fully automatic and quantitative image analysis system for a home-made micro-computed tomography. In Society of nuclear medicine annual meeting abstracts, p 1431.

  16. Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11, 23–27.

    Google Scholar 

  17. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2010). Digital image processing using MATLAB. New Delhi: Tata McGraw Hill Education.

    Google Scholar 

  18. Mandelbrot, B. B. (1983). The fractal geometry of nature (1st ed.). New York: WH Freeman and Co.

    MATH  Google Scholar 

  19. Sijbers, J., & Postnov, A. (2004). Reduction of ring artefacts in high resolution micro-CT reconstructions. Physics in Medicine & Biology, 49, N247.

    Article  Google Scholar 

  20. Atiquzzaman, M. (1992). Multiresolution hough transform-an efficient method of detecting patterns in images. IEEE Transactions on Pattern Analysis & Machine Intelligence, 14, 1090–1095.

    Article  Google Scholar 

  21. Ito, M., Nishida, A., Nakamura, T., Uetani, M., & Hayashi, K. (2002). Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone, 30, 594–598.

    Article  Google Scholar 

  22. Callewaert, F., Venken, K., Ophoff, J., De Gendt, K., Torcasio, A., van Lenthe, G. H., et al. (2009). Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-α. The FASEB Journal, 23, 232–240.

    Article  Google Scholar 

  23. Salmon, P. (2004). Loss of chaotic trabecular structure in OPG-deficient juvenile Paget’s disease patients indicates a chaogenic role for OPG in nonlinear pattern formation of trabecular bone. Journal of Bone and Mineral Research, 19, 695–702.

    Article  Google Scholar 

  24. Mazess, R. B., & Barden, H. (1999). Bone density of the spine and femur in adult white females. Calcified Tissue International, 65, 91–99.

    Article  Google Scholar 

  25. Kuhn, J. L., Goldstein, S. A., Choi, K., London, M., Feldkamp, L. A., & Matthews, L. S. (1989). Comparison of the trabecular and cortical tissue moduli from human iliac crests. Journal of Orthopaedic Research, 7, 876–884.

    Article  Google Scholar 

  26. Rosen, C. J., Compston, J. E., & Lian, J. B. (2009). Primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken: Wiley.

    Google Scholar 

  27. Ulrich, D., Hildebrand, T., Van Rietbergen, B., Muller, R., & Ruegsegger, P. (1997). The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing. Studies in Health Technology and Informatics, 40, 97–112.

    Google Scholar 

  28. Currey, J. D. (2003). Role of collagen and other organics in the mechanical properties of bone. Osteoporosis International, 14, S29–S36.

    Article  Google Scholar 

  29. Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31, 601–608.

    Article  Google Scholar 

  30. Prince, R. L., Devine, A., Dhaliwal, S. S., & Dick, I. M. (2006). Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Archives of Internal Medicine, 166, 869–875.

    Article  Google Scholar 

  31. Eriksen, E. F., Hodgson, S. F., Eastell, R., Riggs, B. L., Cedel, S. L., & O’Fallon, W. M. (1990). Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. Journal of Bone and Mineral Research, 5, 311–319.

    Article  Google Scholar 

  32. Parfitt, A., Villanueva, A., Foldes, J., & Rao, D. S. (1995). Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. Journal of Bone and Mineral Research, 10, 466–473.

    Article  Google Scholar 

  33. Lin, B. N., Whu, S. W., Chen, C. H., Hsu, F. Y., Chen, J. C., Liu, H. W., et al. (2013). Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite–type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 7, 841–854.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support by Ministry of Science and Technology (MOST) under grants NSC 96-2320-B-010-018-MY3, NSC 100-2320-B-010-002 and NSC 102-2627-E-010-001. We would like to thank the Institute of Anatomy and Cell Biology (IACB), Institute of Traditional Medicine (ITM), Institute of Clinical Medicine (ICM) of National Yang-Ming University, National Research Institute of Chinese Medicine (NRICM), Taipei Medical University, and Taipei City Hospital for giving us some technical support and providing us with SD rats. We would especially like to thank C. K. Yu. In a previous study, he developed the segmentation algorithm and helped us finish this study. Finally, we would like to thank Dr. C. H. Chen and his colleagues at Chang-Gung Memorial Hospital in Keelung for using our system and algorithm for their research, providing us with good validation and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Cheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D.SC., Chu, CH. & Chen, JC. Trabecular Bone Morphological Analysis for Preclinical Osteoporosis Application Using Micro Computed Tomography Scanner. J. Med. Biol. Eng. 36, 96–104 (2016). https://doi.org/10.1007/s40846-016-0109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0109-0

Keywords

Navigation