Journal of Medical and Biological Engineering

, Volume 36, Issue 1, pp 44–52

Clinical Pedicle Screw Insertion Trials and System Improvement of C-arm Image Navigation System

  • Chih-Ju Chang
  • Ching-Hsiao Yu
  • Geng-Li Lin
  • Alex Tse
  • Hong-Yu Chu
  • Ching-Shiow Tseng
Original Article
  • 88 Downloads

Abstract

C-arm-image-assisted navigation systems for orthopedic surgery have been applied clinically for several years. Pedicle screw implantation is one of the important applications. A precise definition of a C-arm X-ray projection model is the key requirement for a C-arm-assisted navigation system. This study proposes using a high-pass filter to extract the contour of large markers of the image calibrator and an adaptive threshold method to segment images of small markers, thus improving the overall recognition rate of markers and enhancing the robustness of image calibration. A method for time synchronization of X-ray imaging and the detection of a patient’s lumbar position data for respiration compensation is also proposed. Positioning accuracy evaluation of the developed C-arm-assisted navigation system was carried out clinically. The results show that the mean positioning error is 2.409 mm and that the mean direction error is 1.449°.

Keywords

C-arm Surgical navigation Spinal surgery X-ray detection Image recognition 

References

  1. 1.
    Mobbs, R. J., Sivabalan, P., & Li, J. (2012). Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. Journal of Clinical Neuroscience, 19, 829–835.CrossRefGoogle Scholar
  2. 2.
    Amiot, L. P., Lang, K., Putzier, M., Zippel, H., & Labelle, H. (2000). Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine, 25, 606–614.CrossRefGoogle Scholar
  3. 3.
    Gebhard, F., Weidner, A., Liener, U. C., Stockle, U., & Arand, M. (2004). Navigation at the spine. Injury, 35, 35–45.CrossRefGoogle Scholar
  4. 4.
    Kamimura, M., Ebara, S., Itoh, H., Tateiwa, Y., Kinoshita, T., & Takaoka, K. (1999). Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: Laboratory test and clinical study. Journal of Orthopaedic Science, 4, 197–206.CrossRefGoogle Scholar
  5. 5.
    Liu, Y. J., Tian, W., Liu, B., Li, Q., Hu, L., Li, Z. Y., et al. (2010). Comparison of the clinical accuracy of cervical (c2-c7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional c-arm navigation. Chinese Medical Journal, 123, 2995–2998.Google Scholar
  6. 6.
    Waschke, A., Walter, J., Duenisch, P., Reichart, R., Kalff, R., & Ewald, C. (2013). Ct-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: Single center experience of 4,500 screws. European Spine Journal, 22, 654–660.CrossRefGoogle Scholar
  7. 7.
    Fu, T. S., Chen, L. H., Wong, C. B., Lai, P. L., Tsai, T. T., Niu, C. C., & Chen, W. J. (2004). Computer-assisted fluoroscopic navigation of pedicle screw insertion: An in vivo feasibility study. Acta Orthopaedica, 75, 730–735.CrossRefGoogle Scholar
  8. 8.
    Yang, C. D., Chen, Y. W., Tseng, C. S., Ho, H. J., Wu, C. C., & Wang, K. W. (2012). Non-invasive fluoroscopy-based image-guided surgery reduces radiation exposure for vertebral compression fractures: A preliminary survey. Formosan Journal of Surgery, 45, 12–19.CrossRefGoogle Scholar
  9. 9.
    Hufner, T., Kendoff, D., Citak, M., Geerling, J., & Krettek, C. (2006). Precision in orthopaedic computer navigation. Orthopade, 35, 1043–1055.CrossRefGoogle Scholar
  10. 10.
    Nowitzke, A., Wood, M., & Cooney, K. (2008). Improving accuracy and reducing errors in spinal surgery–a new technique for thoracolumbar-level localization, using computer-assisted image guidance. Spine Journal, 8, 597–604.CrossRefGoogle Scholar
  11. 11.
    Sclafani, J. A., Regev, G. J., Webb, J., Garfin, S. R., & Kim, C. W. (2011). Use of a quantitative pedicle screw accuracy system to assess new technology: Initial studies on o-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS Journal, 5, 57–62.CrossRefGoogle Scholar
  12. 12.
    Rampersaud, Y. R., Foley, K. T., Shen, A. C., Williams, S., & Solomito, M. (2000). Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine, 25, 2637–2645.CrossRefGoogle Scholar
  13. 13.
    Yang, B. P., Wahl, M. M., & Idler, C. S. (2012). Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: Perioperative results of a prospective, comparative, multicenter study. Spine, 37, 2055–2060.CrossRefGoogle Scholar
  14. 14.
    Gelalis, I. D., Paschos, N. K., Pakos, E. E., Politis, A. N., Arnaoutoglou, C. M., Karageorgos, A. C., et al. (2012). Accuracy of pedicle screw placement: A systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. European Spine Journal, 21, 247–255.CrossRefGoogle Scholar
  15. 15.
    Eyke, J. C., Roesch, W., & Whitecloud, T. S. (2002). Computer-assisted virtual fluoroscopy. The University of Pennsylvania Orthopaedic Journal, 15, 53–59.Google Scholar
  16. 16.
    Wu, C. C., Wang, S. M., Yen, C. H., & Tseng, C. S. (2003). Development of c-arm image-assisted navigation system for orthopedic operation. Annual Symposium on Medical Engineering, 20(6), 857–881.Google Scholar
  17. 17.
    He, Y. Y. (2005). C-arm based surgical navigation system for intertrochanteric fracture. Thesis in graduate institute of mechanical engineering, National Central University.Google Scholar
  18. 18.
    Fan, C. W. (2007). C-arm-based navigation system for hip resurfacing arthroplasty. Thesis in graduate institute of mechanical engineering, National Central University.Google Scholar
  19. 19.
    Wang, S. M. (2002). C-arm image-assisted planning and navigation system for orthopedic operation. Thesis in graduate institute of mechanical engineering, National Central University.Google Scholar
  20. 20.
    Yaniv, Z., Livyatan, H., & Joskowicz, L. (2002). Robust automatic c-arm calibration for fluoroscopy-based navigation: A practical approach. In T. Dohi & R. Kikinis (Eds.), Medical image computing and computer-assisted intervention-MICCAI 2002 lecture notes in computer science (pp. 60–68). Berlin: Springer.Google Scholar
  21. 21.
    Zhang, X., & Zheng, G. (2009). Robust automatic detection and removal of fiducial projections in fluoroscopy images: An integrated solution. Medical Engineering & Physics, 31, 571–580.CrossRefGoogle Scholar
  22. 22.
    Penney, G. P., Weese, J., Little, J. A., Desmedt, P., Hill, D. L., & Hawkes, D. J. (1998). A comparison of similarity measures for use in 2-d-3-d medical image registration. IEEE Transactions on Medical Imaging, 17, 586–595.CrossRefGoogle Scholar
  23. 23.
    Cerciello, T., Romano, M., Bifulco, P., Cesarelli, M., & Allen, R. (2011). Advanced template matching method for estimation of intervertebral kinematics of lumbar spine. Medical Engineering & Physics, 33, 1293–1302.CrossRefGoogle Scholar
  24. 24.
    Kim, M., Wu, J., Peters, J., Chung, H., & Samant, S. S. (2009). Evaluation of similarity measures for use in the intensity-based rigid 2d-3d registration for patient positioning in radiotherapy. Medical Physics, 36, 5391–5403.CrossRefGoogle Scholar
  25. 25.
    Bifulco, P., Cerciello, T., Cesarelli, M., & Fratini, A. (2012). A comparison of denoising methods for X-ray fluoroscopic images. Biomedical Signal Processing and Control, 7, 550–559.CrossRefGoogle Scholar
  26. 26.
    Cesarelli, M., Bifulco, P., Cerciello, T., Romano, M., & Paura, L. (2013). X-ray fluoroscopy noise modeling for filter design. International Journal of Computer Assisted Radiology and Surgery, 8, 269–278.CrossRefGoogle Scholar
  27. 27.
    Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21, 450–461.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2016

Authors and Affiliations

  • Chih-Ju Chang
    • 1
    • 2
    • 3
  • Ching-Hsiao Yu
    • 1
    • 4
  • Geng-Li Lin
    • 1
  • Alex Tse
    • 1
  • Hong-Yu Chu
    • 1
  • Ching-Shiow Tseng
    • 1
  1. 1.Department of Mechanical EngineeringNational Central UniversityJhongli CityTaiwan, ROC
  2. 2.Department of NeurosurgeryCathay General HospitalTaipeiTaiwan
  3. 3.Department of Medicine, School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
  4. 4.Department of OrthopedicsTaoyuan General HospitalTaoyuanTaiwan

Personalised recommendations