Skip to main content

Advertisement

Log in

ECG-based Mental Stress Assessment Using Fuzzy Computing and Associative Petri Net

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Medical reports suggest that long-term stress can directly or indirectly lead to mental disorders and cardiovascular disease. However, many people frequently ignore their stress symptoms and fail to take remedial action before developing serious psychological or physiological health problems. Many previous studies have used electrocardiograms (ECG) to evaluate mental stress. However, ECG pattern recognition presents difficulties because the time-varying morphology is subject to physiological conditions and the presence of noise. Therefore, how to achieve effective noise reduction and accurately determine an individual’s exposure to mental stress under various conditions is a recurring issue in engineering and medical research. Heart rate variability is assessed using time- and frequency-domain analyses. To accurately detect mental stress, this research adopts both time and frequency domains, two aspects of physiological characteristics. In this study, a rule-based reasoning model is created for mental stress assessment by combining fuzzy and associative Petri net methodologies. It can serve as a basis for clinical diagnosis and quickly measure the subject’s mental condition and reduce subjective errors. Performance evaluation using Physionet’s stress recognition database shows that the proposed approach compares well with data mining methods and other proposed methods. Moreover, a prototype mental stress assessment system is proposed to help users understand their mental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma, N., & Gedeon, T. (2012). Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Computer Methods and Programs in Biomedicine, 108, 1287–1301.

    Article  Google Scholar 

  2. Buckle, J. (2003). Clinical aromatherapy: Essential oils in practice (pp. 228–246). New York: Churchill Livingstone.

    Book  Google Scholar 

  3. Kopin, I. J., Eisenhofer, G., & Goldstien, D. (1988). Sympathoadrenal medullary system and stress. Advances in Experimental Medicine and Biology, 245, 11–23.

    Article  Google Scholar 

  4. Block, J. P., He, Y., Zaslavsky, A. M., Ding, L., & Ayanian, J. Z. (2009). Psychosocial stress and change in weight among US adults. American Journal of Epidemiology, 170, 181–192.

    Article  Google Scholar 

  5. Nielsen, N. R., Zhang, Z. F., Kristensen, T. S., Netterstrom, B., Schnohr, P., & Gronbak, M. (2005). Self reported stress and risk of breast cancer: Prospective cohort study. British Medical Journal, 331, 548–550.

    Article  Google Scholar 

  6. Freeman, J. B., Garcia, A. M., Fucci, C., Karitani, M., Miller, L., & Leonard, H. L. (2003). Family-based treatment of early-onset obsessive-compulsive disorder. Journal of Child and Adolescent Psychopharmacology, 13, 71–80.

    Article  Google Scholar 

  7. K. S. Yoo and W. H. Lee (2011) Mental stress assessment based on pulse photoplethysmography, IEEE 15th International Symposium on Consumer Electronics Electronics, 323–326

  8. Ramirez, A. J., Graham, J., Richards, M. A., & Gregory, W. M. (1996). Mental health of hospital consultants: the effects of stress and satisfaction at work. The Lancet, 347, 724–728.

    Article  Google Scholar 

  9. Prosser, D., Johnson, S., Kuipers, E., Szmukler, G., Bebbington, P., & Thornicroft, G. (1997). Perceived sources of work stress and satisfaction among hospital and community mental health staff, and their relation to mental health, burnout and job satisfaction. Journal of Psychosomatic Research, 43, 51–59.

    Article  Google Scholar 

  10. Okada, Y., Yoto, T. Y., Suzuki, T., Sakuragawa, S., Sakakibara, H., Shimoi, K., & Sugiura, T. (2013). Wearable ECG recorder with acceleration sensors for monitoring daily stress. Journal of Medical and Biological Engineering, 33, 420–426.

    Article  Google Scholar 

  11. Tikkanen, P. E., Sellin, L. C., Kinnunen, H. O., & Huikuri, H. V. (1999). Using simulated noise to define optimal QT intervals for computer analysis of ambulatory ECG. Medical Engineering & Physics, 21, 15–25.

    Article  Google Scholar 

  12. Übeyli, E. D. (2007). ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Processing, 17, 675–684.

    Article  Google Scholar 

  13. Chandola, T., Britton, A., & Brunner, E. (2008). Work stress and coronary heart disease: what are the mechanisms? European Heart Journal, 29, 640–648.

    Article  Google Scholar 

  14. Kumar, M., Weippert, M., Vilbrandt, R., Kreuzfeld, S., & Stoll, R. (2007). Fuzzy evaluation of heart rate signals for mental stress assessment. IEEE Transactions on Fuzzy Systems, 15, 791–808.

    Article  Google Scholar 

  15. Ranganathan, G., Rangarajan, R., & Bindhu, V. (2012). Estimation of heart rate signals for mental stress assessment using neuro fuzzy technique. Applied Soft Computing, 12, 1978–1984.

    Article  Google Scholar 

  16. Langley, J. N. (1921). The autonomic nervous system, Part I. Cambridge: W. Heffer and Sons.

    Google Scholar 

  17. Croiset, G., Nijsen, M. J., & Kamphuis, P. J. (2000). Role of corticotrophin releasing factor, vasopressin and the autonomic nervous system in learning and memory. European Journal of Pharmacology, 405, 225–234.

    Article  Google Scholar 

  18. Drolet, G., Dumont, E. C., Gosselin, I., Kinkead, R., Laforest, S., & Trottier, J. F. (2001). Role of endogenous opioid system in the regulation of the stress response. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25, 729–741.

    Article  Google Scholar 

  19. Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6, 156–166.

    Article  Google Scholar 

  20. Von Borell, E., Langbein, J., Despres, G., Hansen, S., Leterrier, C., Marchant-Forde, J., et al. (2007). Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals: A review. Physiology & Behavior, 92, 293–316.

    Article  Google Scholar 

  21. Zickmann, B., Hofmann, H. C., Pottkämper, C., Knothe, C., Boldt, J., & Hempelmann, G. (1996). Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. Journal of Cardiothoracic and Vascular Anesthesia, 10, 609–613.

    Article  Google Scholar 

  22. Stein, P. K., Hagley, M. T., Cole, P. L., Domitrovich, P. P., Kleiger, R. E., & Rottman, J. N. (1999). Changes in 24 hour heart rate variability during normal pregnancy. American Journal of Obstetrics and Gynecology, 180, 978–985.

    Article  Google Scholar 

  23. Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring: Applications and limitations. Sports Medicine, 33, 517–555.

    Article  Google Scholar 

  24. Burger, A. J., Charlamb, M., & Sherman, H. B. (1999). Circadian patterns of heart rate variability in normals, chronic stable angina and diabetes mellitus. International Journal of Cardiology, 71, 41–48.

    Article  Google Scholar 

  25. Niskanen, J. P., Tarvainen, M. P., Ranta-aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine, 76, 73–81.

    Article  Google Scholar 

  26. Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141, 122–131.

    Article  Google Scholar 

  27. Hayes, M. H. (1996). Statistical digital signal processing and modelling. New York: John Wiley & Sons.

    Google Scholar 

  28. Dorukl, A., Turkbay, T., Yelbo, Z., Ciyiltepe, M., Iyisoy, A., Sutcigil, L., & Ozflahin, A. (2008). Autonomic nervous system imbalance in young adults with developmental stuttering. Bulletin of Clinical Psychopharmacology, 18, 274–281.

    Google Scholar 

  29. Saul, J. P. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News in Physiological Sciences, 5, 32–37.

    Google Scholar 

  30. Pagani, M., Rimoldi, O., Pizzinelli, P., Furlan, R., Crivellaro, W., Liberati, D., et al. (1991). Assessment of the neural control of the circulation during psychological stress. Journal of the Autonomic Nervous System, 35, 33–42.

    Article  Google Scholar 

  31. Satish, S. C., Rao, M. D., Renae, A. H., Jerry, M. S., & Mindi, J. C. (1998). Psychological and physical stress induce differential effects on human colonic motility. American Journal of Gastroenterology, 93, 985–990.

    Article  Google Scholar 

  32. Leor-Librach, R. J., Eliash, S., Kaplinsky, E., & Bobrovsky, B. Z. (2003). Very low-frequency heart rate variability wave amplitude and sympathetic stimulation-characterization and modeling. IEEE Transactions on Biomedical Engineering, 50, 797–803.

    Article  Google Scholar 

  33. Shusterman, V., & Barnea, O. (2005). Sympathetic nervous system activity in stress and biofeedback relaxation. IEEE Engineering in Medicine and Biology Magazine, 24, 52–57.

    Article  Google Scholar 

  34. Karthikeyan, P., Murugappan, M., & Yaacob, S. (2011). ECG signals based mental stress assessment using wavelet transform. Proceedings of the 2011 IEEE International Conference on Control System, Computing and Engineering, pp. 258–262.

  35. Mokhayeri, F., & Akbarzadeh-T, M. R. (2011). Mental stress detection based on soft computing techniques. Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, pp. 430–433.

  36. De Santos Sierra, A., Sanchez Avila, C., Bailador del Pozo, G., & Guerra Casanova J. (2011). Stress detection by means of stress physiological template. Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 131–136.

  37. Adnane, M., Jiang, Z., Mori, N., & Matsumoto, Y. (2011). An automated program for mental stress and apnea/hypopnea events detection. Proceedings of the 2011 7th International Workshop on Systems, Signal Processing and their Applications, pp. 59–62.

  38. Physionet Dataset: Stress Recognition in Automobile Drivers (2015). http://physionet.nlm.nih.gov/pn3/drivedb/.

  39. Friesen, G., Jannett, T., Jadallah, M., Yates, S., Quint, S., & Nagle, H. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37, 85–98.

    Article  Google Scholar 

  40. Jung, W. H., & Lee, S. G. (2012). An R-peak detection method that uses an SVD filter and a search back system. Computer Methods and Programs in Biomedicine, 108, 1121–1132.

    Article  Google Scholar 

  41. So, H. H., & Chan, K. L.(1997). Development of QRS detection method for real-time ambulatory cardiac monitor. Proceedings of IEEE 19th Annual International Conference. Engineering in Medicine and Biology Society, pp. 289–292.

  42. Christensen, R. (1980). Entropy minimax sourcebook volume III: Computer implementation. Lincoln, Massachusetts: Entropy Limited.

    Google Scholar 

  43. Ross, T. J. (2010). Fuzzy logic with engineering applications. Hoboken: John Wiley & Sons Ltd.

    Book  Google Scholar 

  44. Shih, D. H., Chiang, H. S., & Lin, B. (2007). A generalized associative petri net for reasoning. IEEE Transactions on Knowledge and Data Engineering, 19, 1241–1251.

    Article  Google Scholar 

  45. Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5, 914–925.

    Article  Google Scholar 

  46. Deng, Y., Hsu, D. F., Wu, Z. & Chu, C. H. (2012a). Feature selection and combination for stress identification using correlation and diversity, pervasive systems. Proceedings of the 12th International Symposium on Algorithms and Networks, pp. 37–43.

  47. Deng, Y., Wu, Z., Chu, C. H., & Yang, T. (2012b). Evaluating feature selection for stress identification. Proceedings of the IEEE 13th International Conference on Information Reuse and Integration, pp. 584–591.

  48. Wang, J. S., Lin, C. W., & Yang, Y. T. (2013). A k-nearest-neighbor classifier with heart rate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing, 116, 136–143.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere appreciation for the financial support from the National Science Council of Taiwan (grant NSC 100-2410-H-025-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiu-Sen Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, HS. ECG-based Mental Stress Assessment Using Fuzzy Computing and Associative Petri Net. J. Med. Biol. Eng. 35, 833–844 (2015). https://doi.org/10.1007/s40846-015-0095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0095-7

Keywords

Navigation