Journal of Medical and Biological Engineering

, Volume 35, Issue 5, pp 626–633 | Cite as

Sterilization Method Using Plasma Discharge Against Biofilm-Producing Pseudomonas aeruginosa on Surface of Contact Lens

  • Yoshihisa Nakano
  • Shigeru FujimuraEmail author
  • Takehiko Sato
  • Toshiaki Kikuchi
  • Masakazu Ichinose
  • Akira Watanabe
Original Article


Pseudomonas aeruginosa is the main causative bacteria of contact lens (CL)-associated microbial keratitis. Generally, multi-purpose solutions (MPSs) are widely used for washing, disinfection, and storage of CLs. However, the sterilization effect of an MPS against biofilm-producing P. aeruginosa is insufficient. The aim of the present study is to evaluate the bactericidal effect against biofilm-producing P. aeruginosa on CLs using plasma discharge. The standard strain of P. aeruginosa, PAO1, was used to make a biofilm-formed contamination model. The bactericidal effect of five MPSs and plasma discharge against biofilm-producing P. aeruginosa was observed using the culture method, scanning electron microscopy, and fluorescence microscopy. Plasma discharge was produced for 3, 5, or 10 min. Temperature, pH, and the concentrations of ozone (O3), hydrogen peroxide (H2O2), and nitrogen dioxide (NO2) in the discharged water were monitored. None of the tested MPSs showed a bactericidal effect after 4 h. In contrast, biofilm-producing P. aeruginosa strains were sterilized within 10 min using plasma discharge. Moreover, it was confirmed using fluorescence microscopy that there was no viable bacterium on the surface of the contamination model irradiated for 10 min. Although the concentration of O3 was 5 ppm after 3 min of discharge, it gradually decreased subsequently. Both NO2 and H2O2 concentrations gradually increased. Water temperature rose from 18 to 45 °C, and pH changed from 6 to 2. The results show that plasma discharge may be effective for the sterilization of biofilm-producing P. aeruginosa on CLs.


Plasma Pseudomonas aeruginosa Contact lens 


  1. 1.
    Pachigolla, G., Blomquist, P., & Cavanagh, H. D. (2007). Microbial keratitis pathogens and antibiotic susceptibilities: A 5-year review of cases at an urban county hospital in north Texas. Eye Contact Lens, 33, 45–49.CrossRefGoogle Scholar
  2. 2.
    Stapleton, F., & Carnt, N. (2012). Contact lens-related microbial keratitis: How have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye, 26, 185–193.CrossRefGoogle Scholar
  3. 3.
    Lee, Y. S., Tan, H. Y., Yeh, L. K., Lin, H. C., Ma, D. H., Chen, H. C., et al. (2014). Pediatric microbial keratitis in Taiwan: Clinical and microbiological profiles, 1998–2002 versus 2008–2012. American Journal of Ophthalmology, 157, 1090–1096.CrossRefGoogle Scholar
  4. 4.
    International Standards Organization (2001). ISO 14729 ophthalmic optics -contact lens care products- Microbiological requirements and test methods for products and regimens for hygienic management of contact lenses, Geneva, Switzerland.Google Scholar
  5. 5.
    Vijay, A. K., Sankaridurg, P., Zhu, H., & Willcox, M. D. (2009). Guinea pig models of acute keratitis responses. Cornea, 28, 1153–1159.CrossRefGoogle Scholar
  6. 6.
    Beumer, G. J., Van Blitterswijk, C. A., & Ponec, M. (1994). The use of gas plasma treatment to improve the cell-substrate properties of a skin substitute made of poly (ether)/poly (ester) copolymers. Journal of Materials Science Materials in Medicine, 5, 1–6.CrossRefGoogle Scholar
  7. 7.
    Yang, C. Y., Lin, R. M., Wang, B. C., Lee, T. M., Chang, E., Hang, Y. S., & Chen, P. Q. (1997). In vitro and in vivo mechanical evaluations of plasma-sprayed hydroxyapatite coatings on titanium implants: The effect of coating characteristics. Journal of Biomedical Materials Research, 37, 335–345.zbMATHCrossRefGoogle Scholar
  8. 8.
    Manner, H., May, A., Rabenstein, T., Pech, O., Nachbar, L., Enderle, M. D., et al. (2007). Prospective evaluation of a new high-power argon plasma coagulation system (hp-APC) in therapeutic gastrointestinal endoscopy. Scandinavian Journal of Gastroenterology, 42, 397–405.CrossRefGoogle Scholar
  9. 9.
    Pagella, F., Matti, E., Chu, F., Pusateri, A., Tinelli, C., Olivieri, C., et al. (2013). Argon plasma coagulation is an effective treatment for hereditary hemorrhagic telangiectasia patients with severe nosebleeds. Acta Oto-Laryngologica, 133, 174–180.CrossRefGoogle Scholar
  10. 10.
    Iseki, S., Nakamura, K., Hayashi, M., Tanaka, H., Kondo, H., Kajiyama, H., et al. (2012). Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Applied Physics Letters, 100, 113702.CrossRefGoogle Scholar
  11. 11.
    Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., et al. (2011). Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology, 25, 1–11.CrossRefGoogle Scholar
  12. 12.
    Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226, 1–21.CrossRefGoogle Scholar
  13. 13.
    Trentin, D. S., Silva, D. B., Amaral, M. W., Zimmer, K. R., Silva, M. V., Lopes, N. P., et al. (2013). Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. Plos One, 8, e66257.CrossRefGoogle Scholar
  14. 14.
    Ferroni, A., Nguyen, L., Pron, B., Quesne, G., Brusset, M. C., & Berche, P. (1998). Outbreak of nosocomial urinary tract infections due to Pseudomonas aeruginosa in a pediatric surgical unit associated with tap-water contamination. Journal of Hospital Infection, 39, 301–307.CrossRefGoogle Scholar
  15. 15.
    Berthelot, P., Grattard, F., Mahul, P., Pain, P., Jospé, R., Venet, C., et al. (2001). Prospective study of nosocomial colonization and infection due to Pseudomonas aeruginosa in mechanically ventilated patients. Intensive Care Medicine, 27, 503–512.CrossRefGoogle Scholar
  16. 16.
    Gillespie, T. A., Johnson, P. R., Notman, A. W., Coia, J. E., & Hanson, M. F. (2000). Eradication of a resistant Pseudomonas aeruginosa strain after a cluster of infections in a hematology/oncology unit. Clinical Microbiology & Infection, 6, 125–130.CrossRefGoogle Scholar
  17. 17.
    Srinivasan, A., Wolfenden, L. L., Song, X., Mackie, K., Hartsell, T. L., Jones, H. D., et al. (2003). An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. New England Journal of Medicine, 348, 221–227.CrossRefGoogle Scholar
  18. 18.
    Smith, K., & Hunter, I. S. (2008). Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57, 966–973.CrossRefGoogle Scholar
  19. 19.
    Abidi, S. H., Sherwani, S. K., Siddiqui, T. R., Bashir, A., & Kazmi, S. U. (2013). Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmology, 13, 57.CrossRefGoogle Scholar
  20. 20.
    Szczotka-Flynn, L. B., Imamura, Y., Chandra, J., Yu, C., Mukherjee, P. K., Pearlman, E., & Ghannoum, M. A. (2009). Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea, 28, 918–926.CrossRefGoogle Scholar
  21. 21.
    Admoni, M. M., Bartolomei, A., Qureshi, M. N., Bottone, E. J., & Asbell, P. A. (1994). Disinfection efficacy in an integrated ultraviolet light contact lens care system. CLAO Journal, 20, 246–248.Google Scholar
  22. 22.
    Sato, T., Furuya, O., Ikeda, K., & Nakatani, T. (2008). Generation and transportation mechanisms of chemically active species by dielectric barrier discharge in a tube for catheter sterilization. Plasma Processes and Polymers, 5, 606–614.CrossRefGoogle Scholar
  23. 23.
    Tachikawa, M., & Yamanaka, K. (2014). Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. Water Research, 64, 94–101.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2015

Authors and Affiliations

  • Yoshihisa Nakano
    • 1
  • Shigeru Fujimura
    • 1
    • 2
    Email author
  • Takehiko Sato
    • 3
  • Toshiaki Kikuchi
    • 4
  • Masakazu Ichinose
    • 4
  • Akira Watanabe
    • 1
  1. 1.Research Division for Development of Anti-Infective Agents, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  2. 2.Division of Clinical Infectious Diseases & ChemotherapyTohoku Pharmaceutical UniversitySendaiJapan
  3. 3.Institute of Fluid ScienceTohoku UniversitySendaiJapan
  4. 4.Department of Respiratory MedicineTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations