Skip to main content
Log in

Influence of Aortic Outflow Cannula Orientation on Epiaortic Flow Pattern During Pulsed Cardiopulmonary Bypass

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Cerebral hypoperfusion that may occur during linear cardiopulmonary bypass (CPB) is often responsible for mnemonic problems, loss of neural functions, or coma. Pulsed CPB might provide better organ protection, especially to the brain. The present work numerically investigates how the CPB cannula orientation influences blood flow in aortic and epiaortic vessels during pulsed CPB, realized using the intra-aortic balloon pump (IABP). The computational fluid dynamics (CFD) model consisted of a three-dimensional (3D) patient-specific aorta with three epiaortic vessels, a 40-cm3 intra-aortic balloon, and a 24 Fr arterial cannula in the traditional position and orientation (tilt angle of 45°, case I) and with a greater inclination (tilt angle of 60°, case II). Comparative multi-scale studies, realized by coupling a 3D CFD analysis and a lumped-parameters model, were carried out to establish the hemodynamic modifications due to changes in the cannula orientation. A comparison between the two cases revealed that when the cannula flow was directed to the epiaortic vessels (case I), the mean flows of the left subclavian artery and the thoracic aorta increased by about 2.08 and 7.50 %, respectively. When the flow cannula collided with the aortic arch concavity (case II), this area presented high wall shear stress (WSS) values and a greater amount of blood occurred in the ascending aorta, where it stagnated, although the mean flows of the innominate and left common carotid arteries increased by about 6.25 and 3.13 %, respectively. Pulsed CPB may reduce brain damage during heart surgery, so the evaluation of epiaortic flow during the extracorporeal circulation with various arterial cannula orientations is useful for the analysis of hemodynamic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Machine, D., & Allsager, C. (2006). Principles of cardiopulmonary bypass. Continuing Education in Anaesthesia, Critical Care & Pain, 6, 176–181.

    Article  Google Scholar 

  2. De Bartolo, C., Nigro, A., Fragomeni, G., Colacino, F. M., Wang, D., Jones, C. C., & Zwischenberger, J. (2011). Numerical and experimental flow analysis of the Wang-Zwische Double-Lumen cannula. ASAIO Journal, 57, 318–327.

    Article  Google Scholar 

  3. Mulholland, J. W., Shelton, J. C., & Luo, X. Y. (2005). Blood flow and damage by the roller pumps during cardiopulmonary bypass. Journal of Fluids and Structures, 20, 129–140.

    Article  Google Scholar 

  4. Westerhof, N., Elzinga, G., & Sipkema, P. (1971). An artificial arterial system for pumping hearts. Journal of Applied Physiology, 31, 776–781.

    Google Scholar 

  5. Hornick, P., & Taylor, K. M. (1997). Pulsatile and non-pulsatile perfusion: The continuing controversy. Journal of cardiothoracic and vascular anesthesia, 11, 310–315.

    Article  Google Scholar 

  6. Voss, B., Krane, M., Jung, C., Brockmann, G., Braun, S., Günther, T., et al. (2010). Cardiopulmonary bypass with physiological flow and pressure curves: Pulse is unnecessary. European Journal of Cardio-Thoracic Surgery, 37, 223–232.

    Article  Google Scholar 

  7. Grossi, E. A., Connolly, M. W., Krieger, K. H., Nathan, I. M., Hunter, C. E., Colvin, S. B., et al. (1985). Quantification of pulsatile flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of ‘pulsatile’ and ‘nonpulsatile’ flow. Surgery, 98, 547–554.

    Google Scholar 

  8. Taylor, K. M., Devlin, B. J., Mittra, S. M., Gillan, J. G., Brannan, J. J., & McKenna, J. M. (1980). Assessment of cerebral damage during open heart surgery. A new experimental model. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 14, 197–203.

    Article  Google Scholar 

  9. Taylor, K. M. (1986). Pulsatile perfusion. In K. M. Taylor (Ed.), Cardiopulmonary bypass-principles and management. London: Chapman and Hall.

    Google Scholar 

  10. Jacobs, L. A., Klopp, E. H., Seamone, W., Topaz, S. R., & Gott, V. L. (1969). Improved organ function during cardiac bypass with a roller pump modified to deliver pulsatile flow. Journal of Thoracic and Cardiovascular Surgery, 58, 703–712.

    Google Scholar 

  11. Dunn, J., Kirsh, M. M., Harness, J., Carroll, M., Straker, J., & Sloan, H. (1974). Hemodynamic, metabolic and hematologic effects of pulsatile cardiopulmonary bypass. Journal of Thoracic and Cardiovascular Surgery, 68, 138–147.

    Google Scholar 

  12. Simpson, J. C. (1981). Cerebral perfusion during cardiac surgery using cardiac bypass. In D. B. Longmore (Ed.), Towards safer cardiac surgery. Lancaster: MTP.

    Google Scholar 

  13. Kono, M., Orita, H., Shimanuki, T., Fukasawa, M., Inui, K., & Wasio, M. (1990). A clinical study of cerebral perfusion during pulsatile and non-pulsatile cardiopulmonary bypass. Nippon Geka Gakkai Zasshi, 91, 1016–1022.

    Google Scholar 

  14. Dabrowski, W., Rzecki, Z., Pilat, J., & Czajkowski, M. (2012). Brain damage in cardiac surgery patients. Current Opinion in Pharmacology, 12, 1–6.

    Article  Google Scholar 

  15. Onorati, F., Presta, P., Fuiano, G., Mastroroberto, P., Comi, N., Pezzo, F., et al. (2007). A randomized trial of pulsatile perfusion using intra-aortic balloon pump versus non-pulsatile perfusion on short-term changes in kidney function during cardiopulmonary bypass during myocardial reperfusion. American Journal of Kidney Diseases, 50, 229–238.

    Article  Google Scholar 

  16. Onorati, F., Cristodoro, L., Bilotta, M., Impiombato, B., Pezzo, F., Mastroroberto, P., et al. (2006). Intra-aortic balloon pumping during cardioplegic arrest preserves lung function in patients with chronic obstructive pulmonary disease. Annals of Thoracic Surgery, 82, 35–43.

    Article  Google Scholar 

  17. Onorati, F., Esposito, A., Comi, M. C., Impiombato, B., Cristodoro, L., Mastroroberto, P., & Renzulli, A. (2008). Intra-aortic balloon pump-induced pulsatile flow reduces coagulative and fibrinolytic response to cardiopulmonary bypass. Artificial Organs, 32, 433–441.

    Article  Google Scholar 

  18. Gramigna, V., Caruso, M. V., Rossi, M., Serraino, G. F., Renzulli, A., & Fragomeni, G. (2014). A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass. Computer Methods in Biomechanics and Biomedical Engineering, 25, 1–8.

    Google Scholar 

  19. Kaufmann, T. A., Hormes, M., Laumen, M., Timms, D. L., Linde, T., Schmitz-Rode, T., et al. (2009). The impact of aortic/subclavian outflow cannulation for cardiopulmonary bypass and cardiac support: A computational fluid dynamics study. Artificial Organs, 33, 727–732.

    Article  Google Scholar 

  20. Kaufmann, T. A., Hormes, M., Laumen, M., Timms, D. L., Schmitz-Rode, T., Moritz, A., et al. (2009). Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artificial Organs, 33, 988–992.

    Article  Google Scholar 

  21. Jegger, D., Sundaram, S., Shah, K., Mallabiabarrena, I., Mucciolo, G., & von Segesser, L. K. (2007). Using computational fluid dynamics to evaluate a novel venous cannula (Smart canula) for use in cardiopulmonary bypass operating procedures. Perfusion, 22, 257–265.

    Article  Google Scholar 

  22. Menon, P. G., Antaki, J. F., Undar, A., & Pekkan, K. (2013). Aortic outflow cannula tip design and orientation impacts cerebral perfusion during pediatric cardiopulmonary bypass procedure. Annals of Biomedical Engineering, 41, 2588–2602.

    Article  Google Scholar 

  23. Tokuda, Y., Song, M. H., Ueda, Y., Usui, A., Akita, T., Yoneyama, S., & Maruyama, S. (2008). Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. European Journal of Cardio-Thoracic Surgery, 33, 164–167.

    Article  Google Scholar 

  24. Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2006). Outflow boundary conditions for three dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering, 195, 3776–3796.

    Article  MathSciNet  MATH  Google Scholar 

  25. Vignon-Clementel, I. E. (2006). A coupled multidomain method for computational modeling of blood flow. Ph.D. dissertation, Stanford University, Mechanical Engineering Department.

  26. Serraino, G. F., Marsico, R., Musolino, G., Ventura, V., Gulletta, E., Sante, P., & Renzulli, A. (2011). Pulsatile cardiopulmonary bypass with intra-aortic balloon pump improves organ function and reduces endothelial activation. Circulation Journal, 76, 1121–1129.

    Article  Google Scholar 

  27. Kern, M. J., Aguirre, F. V., Caracciolo, E. A., Bach, R. G., Donohue, T. J., Lasorda, D., et al. (1999). Hemodynamic effects of new intra-aortic balloon counterpulsation timing methods in patients: A multicenter evaluation. American Heart Journal, 137, 1129–1136.

    Article  Google Scholar 

  28. Klopman, M. A., Chen, E. P., & Sniecinski, R. M. (2011). Positioning an intraaortic balloon pump using intraoperative transesophageal echocardiogram guidance. Anesthesia and Analgesia, 113, 40–43.

    Article  Google Scholar 

  29. Formaggia, L., Perktold, K., & Quarteroni, A. (2009). Basic mathematical models and motivations. In A. Quarteroni, L. Formaggia, & A. Veneziani (Eds.), Cardiovascular mathematics: Modeling and simulation of the circulatory system (pp. 47–75). Milan: Spinger.

    Chapter  Google Scholar 

  30. Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J. R., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195, 5685–5706.

    Article  MathSciNet  MATH  Google Scholar 

  31. Stalder, A. F., Russe, M. F., Frydrychowicz, A., Bock, J., Henning, J., & Markl, M. (2008). Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magnetic Resonance in Medicine, 60, 1218–1231.

    Article  Google Scholar 

  32. Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282, 2035–2042.

    Article  Google Scholar 

  33. Siegemund, M., & Steiner, L. A. (2013). Brain perfusion and autoregulation in systemic critical illness. In M. Siegemund & L. A. Steiner (Eds.), Brain disorders in critical illness, mechanism, diagnosis, and treatment (pp. 129–138). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  34. Kaufmann, T. A., Schmitz-Rode, T., & Steinseifer, U. (2012). Implementation of cerebral autoregulation into computational fluid dynamics studies of cardiopulmonary bypass. Artificial Organs, 36(8), 754–758.

    Article  Google Scholar 

  35. Hammon, J. W. (2008). Extracorporeal circulation: The response of humoral and cellular elements of blood to extracorporeal circulation. In L. H. Cohn (Ed.), Cardiac surgery in the adult (pp. 370–389). New York: McGraw-Hill.

    Google Scholar 

  36. Mukherjee, N. D., Beran, A. V., Hirai, J., Wakabayashi, A., Sperling, D. R., Taylor, W. F., & Connolly, J. E. (1973). In vivo determination of renal tissue oxygenation during pulsatile and non-pulsatile left heart bypass. Annals of Thoracic Surgery, 15, 334–363.

    Article  Google Scholar 

  37. Pappas, G., Winter, S. D., Kopriva, C. J., & Steele, P. P. (1975). Improvement of myocardial and other vital organ functions and metabolism with a simple method of pulsatile flow during clinical cardiopulmonary bypass. Surgery, 77, 34–44.

    Google Scholar 

  38. Lu, Y. H., Chen, C. Y., Menon, P. G., Liu, K. T., & Lin, H. H. (2014). Hemodynamic effects of endoleak formation in abdominal aortic aneurysm patients with Stent-Graft implants. Journal of Medical and Biological Engineering, 34(6), 554–558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Gramigna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, M.V., Gramigna, V., Serraino, G.F. et al. Influence of Aortic Outflow Cannula Orientation on Epiaortic Flow Pattern During Pulsed Cardiopulmonary Bypass. J. Med. Biol. Eng. 35, 455–463 (2015). https://doi.org/10.1007/s40846-015-0053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0053-4

Keywords

Navigation