Advertisement

Surface Properties and In Vitro Bioactivity of Fluorapatite/TiO2 Coatings Deposited on Ti Substrates by Nd:YAG Laser Cladding

  • Chi-Sheng Chien
  • Yu-Sheng Ko
  • Tsung-Yuan KuoEmail author
  • Tze-Yuan Liao
  • Huan-Chang Lin
  • Tzer-Min Lee
  • Ting-Fu Hong
Original Article

Abstract

Fluorapatite (FA)/TiO2 composite coatings were deposited on Ti–6Al–4V substrates with an Nd:YAG laser cladding process. Two TiO2 powder phases, namely anatase (A) and rutile (R), were used. After cladding, the FA/TiO2(R) specimen had a rougher surface morphology than that of FA/TiO2(A). Both coatings had a cellular-like main microstructure near the interface of the coating (CL) and transition layers (TL). However, a fine metallurgical bonding state was found that existed between CL and TL of the FA + TiO2(R) specimen. The X-ray diffraction (XRD) analysis results show that the coatings of both specimens were composed principally of FA, CaTiO3, and Al2O3 phases. With the high-energy–density laser cladding process, a portion of the FA in the original coating material remained, while all of the TiO2 powder was decomposed and reacted with the Ca in the FA (Ca-rich phase) to produce CaTiO3. Upon immersion of the clad specimens in simulated body fluid, apatite grew more rapidly on the FA/TiO2(R) coating than on the FA/TiO2(A) coating. The Ca/P ratio of the FA/TiO2(R) specimen approached the ideal bioactivity value after just 2 days of immersion. In contrast, that of the FA/TiO2(A) specimen did not reach the ideal value until 7 days of immersion. Furthermore, a peak corresponding to hydroxycarbonated apatite (HCA) appeared in the XRD patterns of both specimens. For the FA/TiO2(R) specimen, this HCA peak appears after a shorter immersion time. The FA/TiO2(R) specimen with a rougher surface morphology had better in vitro bioactivity than that of FA/TiO2(A).

Keywords

Laser cladding Fluorapatite TiO2 Ti–6Al–4V Hydroxycarbonated apatite 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the Chimei Foundation Hospital, Republic of China (Taiwan), under Grant 110980191.

References

  1. 1.
    Demnati, I., Grossin, D., Combes, C., & Rey, C. (2014). Plasma-sprayed apatite coatings: review of physical-chemical characteristics and their biological consequences. Journal of Medical and Biological Engineering, 34, 1–7.CrossRefGoogle Scholar
  2. 2.
    Jarcho, M. (1981). Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research, 157, 259–278.Google Scholar
  3. 3.
    Lee, H. U., Jeong, Y. S., Park, S. Y., Jeong, S. Y., Kim, H. G., & Cho, C. R. (2009). Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate. Current Applied Physics, 9, 528–533.CrossRefGoogle Scholar
  4. 4.
    Gineste, L., Gineste, M., Ranz, X., Ellefterion, A., Guilhem, A., Rouquet, N., & Frayssinet, P. (1999). Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. Journal of Biomedical Materials Research, 48, 224–234.CrossRefGoogle Scholar
  5. 5.
    Priya, A., Nath, S., Biswas, K., & Basu, B. (2010). In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. Journal of Materials Science Materials in Medicine, 21, 1817–1828.CrossRefGoogle Scholar
  6. 6.
    Han, J. Y., Yu, Z. T., & Zhou, L. (2008). Hydroxyapatite/titania composite bioactivity coating processed by sol-gel method. Applied Surface Science, 255, 455–458.CrossRefGoogle Scholar
  7. 7.
    Roy, M., Balla, V. K., Bandyopadhyay, A., Bose, S., & Bandyopadhyay, A. (2010). Comparison of tantalum and hydroxyapatite coatings on titanium for applications in load bearing implants. Advanced Engineering Materials, 12, B637–B641.CrossRefGoogle Scholar
  8. 8.
    Kim, H. W., & Kim, H. E. (2004). Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials, 25, 3351–3358.CrossRefGoogle Scholar
  9. 9.
    Palmer, C., & Wolfe, S. H. (2005). Position of the American Dietetic Association: the impact of fluoride on health. Journal of the American Dietetic Association, 105, 1620–1628.CrossRefGoogle Scholar
  10. 10.
    Zhao, X., Liu, X., & Ding, C. (2005). Acid-induced bioactive titania surface. Journal of Biomedical Materials Research, 75A, 888–894.CrossRefGoogle Scholar
  11. 11.
    Liu, X., & Ding, C. (2002). Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials, 23, 4065–4077.CrossRefGoogle Scholar
  12. 12.
    Zhao, X., Liu, X., Ding, C., & Chu, K. (2006). Paul, “In vitro bioactivity of plasma-sprayed TiO2 coating after sodium hydroxide treatment”. Surface and Coatings Technology, 200, 5487–5492.CrossRefGoogle Scholar
  13. 13.
    Zhao, X., Liu, X., You, J., Chen, Z., & Ding, C. (2008). Bioactivity and cytocompatibility of plasma-sprayed titania coating treated by sulfuric acid treatment. Surface and Coatings Technology, 202, 3221–3226.CrossRefGoogle Scholar
  14. 14.
    Lee, S. H., Kim, H. W., Lee, E. J., Li, L. H., & Kim, H. E. (2006). Hydroxyapatite-TiO2 hybrid coating on Ti implants. Journal of Biomaterials Applications, 20, 195–208.CrossRefGoogle Scholar
  15. 15.
    Li, P., Kangasniemi, I., de Groot, K., & Kokubo, T. (1994). Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. Journal of the American Ceramic Society, 77, 1307–1312.CrossRefGoogle Scholar
  16. 16.
    Kumar, R. R., & Wang, M. (2002). Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Materials Letters, 55, 133–137.CrossRefGoogle Scholar
  17. 17.
    Milella, E., Cosentino, F., Licciulli, A., & Massaro, C. (2001). Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials, 22, 1425–1431.CrossRefGoogle Scholar
  18. 18.
    Ramires, P. A., Romito, A., Cosentino, F., & Milella, E. (2001). The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 22, 1467–1474.CrossRefGoogle Scholar
  19. 19.
    Liu, J. X., Yang, D. Z., Shi, F., & Cai, Y. J. (2003). Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films, 429, 225–330.CrossRefGoogle Scholar
  20. 20.
    Liu, X., Zhao, X., Ricky Fu, K. Y., Joan Ho, P. Y., Ding, C., & Chu Paul, K. (2005). “Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite”. Biomaterials, 26, 6143–6150.CrossRefGoogle Scholar
  21. 21.
    Song, W. H., Jun, Y. K., Han, Y., & Hong, S. H. (2004). Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 25, 3341–3349.CrossRefGoogle Scholar
  22. 22.
    Lin, C. M., & Yen, S. K. (2006). Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid. Materials Science and Engineering C, 26, 54–64.CrossRefGoogle Scholar
  23. 23.
    Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 27, 2907–2915.CrossRefGoogle Scholar
  24. 24.
    Lusquiños, F., Pou, J., Arias, J. L., Boutinguiza, M., León, B., Pérez-Amor, M., et al. (2001). Production of calcium phosphate coatings on Ti6Al4 V obtained by Nd: yttrium-aluminum-garnet laser cladding. Journal of Applied Physics, 90, 4231–4236.CrossRefGoogle Scholar
  25. 25.
    Zheng, M., Fan, D., Li, X. K., Zhang, J. B., & Liu, Q. B. (2010). Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid. Journal of Alloys and Compounds, 489, 211–214.CrossRefGoogle Scholar
  26. 26.
    Wang, D., Chen, C., Ma, J., & Lei, T. (2007). Microstructure of yttric calcium phosphate bioceramic coatings synthesized by laser cladding. Applied Surface Science, 253, 4016–4020.CrossRefGoogle Scholar
  27. 27.
    Chien, C. S., Ke, Y. S., Kuo, T. Y., Liao, T. Y., Hong, T. F., & Lee, T. M. (2011). In vitro bioactivity test of FA added with TiO2 of different phases coated on Ti6Al4V substrates by Nd-YAG laser cladding process. Advanced Materials Research, 287–290, 2225–2229.CrossRefGoogle Scholar
  28. 28.
    Kou, S. (1987). Basic concepts of solidification welding metallurgy (pp. 129–177). New York: John Wiley & Sons.Google Scholar
  29. 29.
    Ye, H., Liu, X. Y., & Hong, H. P. (2009). Cladding of titanium/fluorapatite composites onto Ti6Al4 V substrate and the in vitro behaviour in the simulated body fluid. Applied Surface Science, 255, 8126–8134.CrossRefGoogle Scholar
  30. 30.
    Gu, Y. W., Khor, K. A., & Cheang, P. (2003). In vitro studies of plasma-sprayed hydroxyapatite Ti6Al4V composite coatings in simulated body fluid (SBF). Biomaterials, 24, 1603–1611.CrossRefGoogle Scholar
  31. 31.
    Yang, C. Y., Lee, T. M., Lui, Y. Z., Yang, C. W., Lui, T. S., Kuo, A., & Huang, B. W. (2010). The influence of plasma-sprayed parameters on the characteristics of fluorapatite coatings. Journal of Medical and Biological Engineering, 30, 91–98.Google Scholar
  32. 32.
    Trepanier, C., Tabrizian, M., Yahia, L. H., Bilodeau, L., & Piron, D. L. (1998). Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of Biomedical Materials Research, 43, 433–440.CrossRefGoogle Scholar
  33. 33.
    Yang, Z., Si, S., Zeng, X., Zhang, C., & Dai, H. (2008). Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Acta Biomaterialia, 4, 560–568.CrossRefGoogle Scholar
  34. 34.
    Kokubo, T., Kim, H. M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24, 2161–2175.CrossRefGoogle Scholar
  35. 35.
    Uchida, M., Kim, H. M., Kokubo, T., Fujibayashi, S., & Nakamura, T. (2003). Structural dependence of apatite formation on titania gels in a simulated body fluid. Journal of Biomedical Materials Research, 64A, 164–170.CrossRefGoogle Scholar
  36. 36.
    Shin, K. R., Ko, Y. G., & Shin, D. H. (2011). Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. Journal of Alloys and Compounds, 509s, s478–s481.CrossRefGoogle Scholar
  37. 37.
    Wu, J. M., Hayakawa, S., Tsuru, K., & Osaka, A. (2004). Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. Journal of the American Ceramic Society, 87, 1635–1642.CrossRefGoogle Scholar
  38. 38.
    Yang, B., Uchida, M., Kim, H. M., Zhang, X., & Kokubo, T. (2004). Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 25, 1003–1010.CrossRefGoogle Scholar
  39. 39.
    Matsusaka, S., Ohmori, A., & Toki, Y. (2001). Thermal spray 2001: New surfaces for a new millennium (pp. 87–92). Material Park, OH: ASM International.Google Scholar
  40. 40.
    Takadama, H., Kim, H. M., Kokubo, T., & Nakamura, T. (2001). An XPS study of the process of apatite formation on bioactive titanium metal in a simulated body fluid. Journal of Biomedical Materials Research, 55, 185–193.CrossRefGoogle Scholar
  41. 41.
    Fathi, M. H., & Azam, F. (2007). Novel hydroxyapatite/tantalum surface coating for metallic dental implant. Materials Letters, 61, 1238–1241.CrossRefGoogle Scholar
  42. 42.
    Filiaggi, M. J., Pilliar, R. M., & Coombs, N. A. (1993). Post-plasma-spraying heat treatment of the HA coating/Ti-6A1-4 V implant system. Journal of Biomedical Materials Research, 27, 191–198.CrossRefGoogle Scholar
  43. 43.
    LeGeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14, 65–88.CrossRefGoogle Scholar
  44. 44.
    Chien, C. S., Liao, T. Y., Hong, T. F., Kuo, T. Y., Wu, J. L., & Lee, T. M. (2011). Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders. Surface and Coatings Technology, 205, 3141–3146.CrossRefGoogle Scholar
  45. 45.
    Yin, S., Fujishiro, Y., Uchida, S., & Sato, T. (1998). Characterization of ceria and yttria codoped zirconia/alumina composites crystallised in supercritical methanol. The Journal of supercritical fluids, 13, 363–368.CrossRefGoogle Scholar
  46. 46.
    Chien, C. S., Liao, T. Y., Hong, T. F., Kuo, T. Y., Chang, C. H., Yeh, M. L., & Lee, T. M. (2014). Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti6Al4V substrates using Nd-YAG laser. Journal of Medical and Biological Engineering, 34, 109–115.CrossRefGoogle Scholar
  47. 47.
    Ohba, T., Watanabe, T., Sakai, E., & Daimon, M. (1999). Coating of HAp/CaTiO3 multilayer on titanium substrates by hydrothermal method. Journal of the Ceramic Society of Japan, 107, 907–912.CrossRefGoogle Scholar
  48. 48.
    Xiao, X. F., Liu, R. F., & Zheng, Y. Z. (2006). Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal–electrochemical method on titanium. Surface and Coatings Technology, 200, 4406–4413.CrossRefGoogle Scholar
  49. 49.
    Zhou, P., & Akao, M. (1997). Preparation and characterization of double layered coating composed of hydroxyapatite and perovskite by thermal decomposition. BioMedical Materials and Engineering, 7, 67–81.Google Scholar
  50. 50.
    Combes, C., & Rey, C. (2010). Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomaterialia, 6, 3362–3378.CrossRefGoogle Scholar
  51. 51.
    Weng, J., Liu, X. G., Li, X. D., & Zhang, X. D. (1995). Intrinsic factors of apatite influencing its amorphization during plasma-spray coating. Biomaterials, 16, 39–44.CrossRefGoogle Scholar
  52. 52.
    Denissen, H. W., de Nieuport, H. M., Kalk, W., Schaeken, H. G., & van de Hooff, A. (1991). Fluorapatite and hydroxyapatite heat-treated coatings for dental implants (pp. 130–140). Amsterdam: Elsevier Science.Google Scholar
  53. 53.
    Wolke, J., Klein, C., & de Groot, K. (1991). Bioceramics for maxillofacial applications. In Bioceramics for the human body (pp. 166–180). Amsterdam: Elsevier Science.Google Scholar
  54. 54.
    Kokubo, T. (1998). Apatite formation on surfaces of ceramics metals and polymers in body environment. Acta Materialia, 46, 2519–2527.CrossRefGoogle Scholar
  55. 55.
    Neo, M., Nakamura, T., Ohtsuki, C., Kokubo, T., & Yamamuro, T. (1993). Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. Journal of Biomedical Materials Research, 23, 999–1006.CrossRefGoogle Scholar
  56. 56.
    Doi, Y. (1997). Sintered carbonate apatites as bone substitutes. Cells Materials, 7, 111–122.Google Scholar
  57. 57.
    Doi, Y., Shibutani, T., Moriwaki, Y., Kajimoto, T., & Iwayama, Y. (1998). Sintered carbonate apatites as bioresorbable bone substitutes. Journal of Biomedical Materials Research, 39, 603–610.CrossRefGoogle Scholar

Copyright information

© Taiwanese Society of Biomedical Engineering 2015

Authors and Affiliations

  • Chi-Sheng Chien
    • 1
    • 2
  • Yu-Sheng Ko
    • 3
  • Tsung-Yuan Kuo
    • 3
    Email author
  • Tze-Yuan Liao
    • 4
  • Huan-Chang Lin
    • 5
  • Tzer-Min Lee
    • 6
  • Ting-Fu Hong
    • 7
  1. 1.Department of Electrical EngineeringSouthern Taiwan University of Science and TechnologyTainanTaiwan, ROC
  2. 2.Chimei Foundation HospitalTainanTaiwan, ROC
  3. 3.Department of Mechanical EngineeringSouthern Taiwan University of Science and TechnologyTainanTaiwan, ROC
  4. 4.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC
  5. 5.Department of Industrial ManagementI-Shou UniversityKaohsiungTaiwan, ROC
  6. 6.Medical College Institute of Oral MedicineNational Cheng Kung UniversityTainanTaiwan, ROC
  7. 7.Graduate Institute of Materials EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan, ROC

Personalised recommendations