Skip to main content
Log in

[Rb3BaCl][In8Se14]: Compressed chalcopyrite-type selenide achieved by polycationic substitution strategy toward excellent nonlinear optical property

通过聚阳离子取代策略实现压缩黄铜矿型硒化物[Rb3BaCl][In8Se14]以获得优异的非线性光学性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Incorporation of monovalent Ag+ or Li+ ions into the anionic groups MQ22− (M = Ga, In; Q = S, Se) within diamond-like structures holds great promise for the second-order nonlinear optical (NLO) crystals. However, these crystals are significantly challenged by a low laser-induced damage threshold (LIDT) or the drawbacks associated with silica tube corrosiveness, which severely limit their suitability for high-power applications. In this study, we employed the unusual polycationic substitution strategy based on ZnSe, specifically [Se4Zn13]Se24 → [ClRb3Ba]Se24, to design and synthesize a novel salt-inclusion chalcogenide, denoted as [Rb3BaCl][In8Se14] (1). Compound 1 shares similarity with AgInSe2, as it maintains crystallographic symmetry in the space group I-42d and possesses a compressed chalcopyrite-type selenide structure. Remarkably, compound 1 displays remarkable phase-matching second-harmonic generation (SHG) intensity (2.0 × AgGaS2@2.90 µm) owing to the parallel arrangement of tetrahedral InSe4 units. Moreover, the incorporation of the polycation [Rb3BaCl]4+ that promotes the enhancement of the band gap (2.02 eV), avoiding two-photon absorption of 2.09-µm laser, combined with a low thermal expansion coefficient, enables compound 1 to exhibit a substantial LIDT (3.2 × AgGaS2@2.09 µm). This study establishes the potential of polycationic substitution within diamond-like structures for the rational design of exceptional mid- and far-infrared NLO materials.

摘要

单价Ag+或Li+引入到类金刚石结构的MQ22− (M = Ga, In; Q = S, Se)阴离子基团中能合成出良好的二阶非线性光学(NLO)晶体材料. 然而, 这些晶体分别面临着较低的抗激光损伤阈值(LIDT)或二氧化硅易被腐蚀等缺点, 严重限制了其在高功率激光应用中的实用性. 在本研究中, 基于类金刚石结构的ZnSe, 我们采用[Se4Zn13]Se24 → [ClRb3Ba]Se24非常规的聚阳离子取代策略, 设计并合成了一种新型的盐包硫属化合物[Rb3BaCl][In8Se14] (1). 化合物 1 属于压缩黄铜矿型硒化物并保持了与AgInSe2相同的晶体对称性(I-42d 空间群). 值得注意的是, 由于 InSe4四面体结构单元的平行排列, 化合物1具有相位匹配的强二次谐波(SHG)响应(2.0倍于AgGaS2@2.90 µm). 此外, 聚阳离子[Rb3BaCl]4+的引入促进了光学带隙(2.02 eV)的增强, 有效地避免了对2.09 µm激光的双光子吸收; 同时结合较低的热膨胀系数, 使得化合物1表现出高的LIDT(3.2倍于AgGaS2@2.09 µm). 本研究验证了在类金刚石结构中进行聚阳离子取代的可行性, 并成功获得了性能优异的中远红外NLO材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iyer AK, He J, Xie H, et al. Stabilization of the polar structure and giant second-order nonlinear response of single crystal γ-NaAs0.95Sb0.05Se2. Adv Funct Mater, 2023, 33: 2211969

    Article  CAS  Google Scholar 

  2. Mutailipu M, Han J, Li Z, et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C (NH2)3BF4. Nat Photon, 2023, 17: 694–701

    Article  CAS  Google Scholar 

  3. Pan Y, Guo SP, Liu BW, et al. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev, 2018, 374: 464–496

    Article  CAS  Google Scholar 

  4. Wu M, Feng J, Xie C, et al. From phosphate fluoride to fluorophosphate: design of novel ultraviolet/deep-ultraviolet nonlinear optical materials for BePO3F with optical property enhancement. ACS Appl Mater Interfaces, 2022, 14: 39081–39090

    Article  CAS  PubMed  Google Scholar 

  5. Yuan B, Wu H, Hu Z, et al. Deep ultraviolet-transparent materials with strong second-harmonic response. Chem Mater, 2022, 34: 8004–8012

    Article  CAS  Google Scholar 

  6. Bai Z, Ok KM. Advances in aliovalent substitution strategy for the design and synthesis of nonlinear optical materials: d0 transition metal/gallium iodates and selenites. Coord Chem Rev, 2023, 490: 215212

    Article  CAS  Google Scholar 

  7. Ran MY, Wang AY, Wei WB, et al. Recent progress in the design of IR nonlinear optical materials by partial chemical substitution: Structural evolution and performance optimization. Coord Chem Rev, 2023, 481: 215059

    Article  CAS  Google Scholar 

  8. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    Article  CAS  Google Scholar 

  9. Chen CT, Wu BC, Jiang AD, et al. A new-type ultraviolet SHG crystal-β-BaB2O4. Scientia Sinica Series B, 1985, 28: 235–243 doi:https://doi.org/10.1360/yb1985-28-3-235

    Google Scholar 

  10. Haussühl S. Elastische und Thermoelastische Eigenschaften von KH2 PO4, KH2AsO4, NH4H2PO4, NH4H2AsO4 und RbH2PO4. Z für Kristallographie-Crystalline Mater, 1964, 120: 401–414

    Article  Google Scholar 

  11. Tordjman PI, Masse E, Guitel JC. Structure Cristalline du Monophosphate KTiPO5. Z für Kristallographie, 1974, 139: 103–115

    Article  CAS  Google Scholar 

  12. Liu BW, Jiang XM, Wang GE, et al. Oxychalcogenide BaGeOSe2: highly distorted mixed-anion building units leading to a large second-harmonic generation response. Chem Mater, 2015, 27: 8189–8192

    Article  CAS  Google Scholar 

  13. Wang R, Liang F, Liu X, et al. Heteroanionic melilite oxysulfide: a promising infrared nonlinear optical candidate with a strong second-harmonic generation response, sufficient birefringence, and wide bandgap. ACS Appl Mater Interfaces, 2022, 14: 23645–23652

    Article  CAS  Google Scholar 

  14. Chen MC, Wu LM, Lin H, et al. Disconnection enhances the second harmonic generation response: synthesis and characterization of Ba23Ga8Sb2S38. J Am Chem Soc, 2012, 134: 6058–6060

    Article  CAS  PubMed  Google Scholar 

  15. Chu Y, Wang P, Zeng H, et al. Hg3P2S8: a new promising infrared nonlinear optical material with a large second-harmonic generation and a high laser-induced damage threshold. Chem Mater, 2021, 33: 6514–6521

    Article  CAS  Google Scholar 

  16. Shi ZH, Chi Y, Sun ZD, et al. Sn2Ga2S5: a type of IR nonlinear-optical material. Inorg Chem, 2019, 58: 12002–12006

    Article  CAS  PubMed  Google Scholar 

  17. Zheng ZX, Qiu ZX, Xie CH, et al. Remarkable phase-matchable second-harmonic generation realized by strong polarities of [PbSe3] and [GaSe4] functional motifs in PbGa4Se7. Sci China Mater, 2023, 66: 2795–2802

    Article  CAS  Google Scholar 

  18. Li Q, Liu H, Yu H, et al. Alignment of A-shaped basic building units to construct one new KMoO3(IO3) polar polymorph. Inorg Chem, 2023, 62: 3896–3903

    Article  CAS  PubMed  Google Scholar 

  19. She Y, Jiao J, Wang Z, et al. LiVTeO5: a mid-infrared nonlinear optical vanadium tellurate crystal exhibiting enhanced second harmonic generation activities and notable birefringence. Inorg Chem Front, 2023, 10: 6557–6565

    Article  CAS  Google Scholar 

  20. Zhao J, Mei D, Yang Y, et al. Rb10Zn4Sn4S17: a chalcogenide with large laser damage threshold improved from the Mn-based analogue. Inorg Chem, 2019, 58: 15029–15033

    Article  CAS  PubMed  Google Scholar 

  21. Yang LQ, Jiang XM, Pei SM, et al. Optimizing the nonlinear optical performance of an A-N-M-Q (A: alkali metal; N: d10 metal; M: main group metal; Q: chalcogen) system. ACS Appl Mater Interfaces, 2022, 14: 4352–4359

    Article  CAS  PubMed  Google Scholar 

  22. Chai X-, Li M-, Lin S-, et al. Cs4Zn5P6S18I2: the largest birefringence in chalcohalide achieved by highly polarizable nonlinear optical functional motifs. Small, 2023, 19: 2303847

    Article  CAS  Google Scholar 

  23. Zhao X, Lin C, Yang S, et al. γ-P4S3I2: a new metal-free infrared second-order nonlinear optical crystal designed by polymorphism strategy. Inorg Chem Front, 2023, 10: 1119–1126

    Article  CAS  Google Scholar 

  24. Chi Y, Sun ZD, Xu QT, et al. Hexagonal In2Se3: a defect wurtzite-type infrared nonlinear optical material with moderate birefringence contributed by unique InSe5 unit. ACS Appl Mater Interfaces, 2020, 12: 17699–17705

    Article  CAS  PubMed  Google Scholar 

  25. Tang C, Xing W, Liang F, et al. Structural modification from centrosymmetric Rb4Hg2Ge2S8 to noncentrosymmetric (Na3Rb)Hg2Ge2S8: mixed alkali metals strategy for infrared nonlinear optical material design. J Mater Chem C, 2022, 10: 3300–3306

    Article  CAS  Google Scholar 

  26. Liang F, Kang L, Lin Z, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord Chem Rev, 2017, 333: 57–70

    Article  CAS  Google Scholar 

  27. Dong L, Zhang S, Gong P, et al. AgIn5Se8: a defect diamond-like nonlinear optical selenide. Inorg Chem Front, 2023, 10: 3248–3254

    Article  CAS  Google Scholar 

  28. Isaenko L, Dong L, Kurus A, et al. LIxAg1−xGaSe2: interplay between lithium and silver in mid-infrared nonlinear optical chalcogenides. Adv Opt Mater, 2022, 10: 7

    Article  Google Scholar 

  29. Isaenko L, Dong L, Korzhneva K, et al. Evolution of structures and optical properties in a series of infrared nonlinear optical crystals LixAg1−xInSe2 (0 ⩽ x ⩽ 1). Inorg Chem, 2023, 62: 15936–15942

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Li YY, Li B, et al. Salt-inclusion chalcogenide [Ba4Cl2] [ZnGa4S10]: rational design of an ir nonlinear optical material with superior comprehensive performance derived from AgGaS2. Chem Mater, 2020, 32: 8012–8019

    Article  CAS  Google Scholar 

  31. Liu BW, Jiang XM, Zeng HY, et al. [ABa2 Cl][Ga4S8] (A = Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering. J Am Chem Soc, 2020, 142: 10641–10645

    Article  CAS  PubMed  Google Scholar 

  32. Liu BW, Zeng HY, Jiang XM, et al. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2] [Ga5S10] (A= K, Rb, and Cs). CCS Chem, 2021, 3: 964–973

    Article  CAS  Google Scholar 

  33. Pei SM, Liu BW, Jiang XM, et al. Superior infrared nonlinear optical performance achieved by synergetic functional motif and vacancy site modulations. Chem Mater, 2021, 33: 8831–8837

    Article  CAS  Google Scholar 

  34. Zhang Y, Wu H, Hu Z, et al. Achieving a strong second harmonic generation response and a wide band gap in a Hg-based material. Inorg Chem Front, 2022, 9: 4075–4080

    Article  CAS  Google Scholar 

  35. Chen W-, Liu B-, Pei S-, et al. [K2 PbX][Ga7 S12] (X = Cl, Br, I): the first lead-containing cationic moieties with ultrahigh second-harmonic generation and band gaps exceeding the criterion of 2.33 eV. Adv Sci, 2023, 10: 2207630

    Article  CAS  Google Scholar 

  36. Pei SM, Liu BW, Chen WF, et al. Breaking the bottleneck of simultaneously wide band gap and large nonlinear optical coefficient by a “pore reconstruction” strategy in a salt-inclusion chalcogenide. Mater Horiz, 2023, 10: 2921–2926

    Article  CAS  PubMed  Google Scholar 

  37. Qiu P, Qin Y, Zhang Q, et al. Intrinsically high thermoelectric performance in AgInSe2 n-type diamond-like compounds. Adv Sci, 2018, 5: 1700727

    Article  Google Scholar 

  38. Sheldrick GM. A short history of SHELX. Acta Crystlogr Found Crystlogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  39. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  40. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  41. Zhang MJ, Jiang XM, Zhou LJ, et al. Two phases of Ga2S3: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds. J Mater Chem C, 2013, 1: 4754–4760

    Article  CAS  Google Scholar 

  42. Gonze X. Perturbation expansion of variational principles at arbitrary order. Phys Rev A, 1995, 52: 1086–1095

    Article  CAS  PubMed  Google Scholar 

  43. Ghosez P, Gonze X, Godby RW. Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems. Phys Rev B, 1997, 56: 12811–12817

    Article  CAS  Google Scholar 

  44. Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys, 2001, 73: 515–562

    Article  CAS  Google Scholar 

  45. Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045–1097

    Article  CAS  Google Scholar 

  46. Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  47. Chen WF, Liu BW, Jiang XM, et al. Infrared nonlinear optical performances of a new sulfide β-PbGa2S4. J Alloys Compd, 2022, 905: 164090

    Article  CAS  Google Scholar 

  48. Sharma S, Ambrosch-Draxl C. Second-harmonic optical response from first principles. Physica Scripta, 2004, T109: 128–134

    Article  CAS  Google Scholar 

  49. Aitken JA, Larson P, Mahanti SD, et al. Li2PbGeS4 and Li2EuGeS4: polar chalcopyrites with a severe tetragonal compression. Chem Mater, 2001, 13: 4714–4721

    Article  CAS  Google Scholar 

  50. Wu K, Zhang B, Yang Z, et al. New compressed chalcopyrite-like Li2BaMIVQ4 (MIV = Ge, Sn; Q = S, Se): Promising infrared nonlinear optical materials. J Am Chem Soc, 2017, 139: 14885–14888

    Article  CAS  PubMed  Google Scholar 

  51. Weszka J, Daniel P, Burian A, et al. Raman scattering in In2Se3 and InSe2 amorphous films. J Non-Crystalline Solids, 2000, 265: 98–104

    Article  CAS  Google Scholar 

  52. Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36: 2577–2583

    Article  CAS  Google Scholar 

  53. Simmons EL. Diffuse reflectance spectroscopy: a comparison of the theories. Appl Opt, 1975, 14: 1380–1386

    Article  CAS  PubMed  Google Scholar 

  54. Julien C, Eddrief M, Kambas K, et al. Electrical and optical properties of In2Se3 thin films. Thin Solid Films, 1986, 137: 27–37

    Article  CAS  Google Scholar 

  55. Xu QT, Sun ZD, Chi Y, et al. Monoclinic gallium selenide: an AgGaS2-type structure variant with balanced infrared nonlinear optical performance. J Mater Chem C, 2019, 7: 11752–11756

    Article  CAS  Google Scholar 

  56. Androulakis J, Peter SC, Li H, et al. Dimensional reduction: a design tool for new radiation detection materials. Adv Mater, 2011, 23: 4163–4167

    Article  CAS  PubMed  Google Scholar 

  57. Liu BW, Jiang XM, Pei SM, et al. Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map. Mater Horiz, 2021, 8: 3394–3398

    Article  CAS  PubMed  Google Scholar 

  58. Jiang X, Zhao S, Lin Z, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. J Mater Chem C, 2014, 2: 530–537

    Article  CAS  Google Scholar 

  59. Li SF, Jiang XM, Liu BW, et al. Superpolyhedron-built second harmonic generation materials exhibit large mid-infrared conversion efficiencies and high laser-induced damage thresholds. Chem Mater, 2017, 29: 1796–1804

    Article  CAS  Google Scholar 

  60. Wang Z, Ren W. Mid-infrared optical modulator enabled by photothermal effect. Light Sci Appl, 2023, 12: 7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu B-, Jiang X-, Li B-, et al. Li[LiCs2Cl][Ga3S6]: A nanoporous framework of GaS4 tetrahedra with excellent nonlinear optical performance. Angew Chem Int Ed, 2020, 59: 4856–4859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21921001, U21A20508, 92161125, 22075283, and 21827813), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021300, and 2020303), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information (2020ZZ108).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wu F performed the experiments, data analyses and manuscript writing. Chen WF and Jiang XM performed the theoretical analyses. Wu ZX offered some advice on the manuscript writing. Liu BW and Guo GC guided and supervised the experiments, and revised the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bin-Wen Liu  (刘彬文) or Guo-Cong Guo  (郭国聪).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Fan Wu received his BE degree in applied chemistry from Gannan Normal University in 2021. Currently, he is pursuing his Master’s degree at Fujian Normal University, specializing in the field of NLO materials.

Bin-Wen Liu earned his BE degree from Hunan University in 2010 and PhD degree in inorganic chemistry from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2016. Since 2019, he has been serving as a professor at Fujian Institute of Research on the Structure of Matter. His current research focuses on solid-state inorganic chemistry and NLO materials.

Guo-Cong Guo obtained his BS degree from Xiamen University in 1986 and PhD degree from The Chinese University of Hong Kong in 1999. Since 2000, he has been serving as a full professor at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. His current research focuses on inorganic-organic hybrid photo functional materials, infrared NLO materials, electronic structure crystallography, and catalytic materials.

Electronic Supplementary Material

40843_2024_2908_MOESM1_ESM.pdf

Supporting Information: [Rb3BaCl][In8Se14]: Compressed Chalcopyrite-type Selenide Achieved by Polycationic Substitution Strategy toward Excellent Nonlinear Optical Property

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, WF., Wu, ZX. et al. [Rb3BaCl][In8Se14]: Compressed chalcopyrite-type selenide achieved by polycationic substitution strategy toward excellent nonlinear optical property. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-024-2908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-024-2908-6

Keywords

Navigation