Skip to main content
Log in

Metal atom-induced microenvironment regulation in polymeric carbon nitride for photocatalytic hydrogen evolution

金属原子诱导的微环境调控在聚合氮化碳光催化析氢中的研究

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Developing high-efficiency and stable semiconductor photocatalysts is crucial for realizing the practical applications of photocatalysis. Polymeric carbon nitride (CN) has been verified as a promising candidate for photocatalytic H2 evolution due to a series of outstanding physicochemical properties. Over the past decade, significant progress has been made in enhancing the photocatalytic H2 evolution of CN-based photocatalysts through various strategies based on thermodynamics or kinetics. Recently, metal atom decoration has provided a new avenue for modifying CN by precisely regulating its microenvironment. This paper provides a comprehensive review of recent advancements in metal atom-decorated CN photocatalysts for photocatalytic H2 evolution via water splitting, encompassing single metal atom decorated CN, dual metal atoms decorated CN, and single metal atom and cluster co-decorated CN, in which the vital roles of metal atoms are highlighted. Furthermore, the challenges and opportunities in the development of advanced CN-supported metal atom photocatalysts are thoroughly summarized.

摘要

开发高效稳定的半导体光催化剂对光催化技术迈向实际应用至 关重要. 聚合物氮化碳(CN)因其优异的物理化学性质而被视为最具发 展前景的制氢光催化剂之一. 在过去几十年中, 从热力学或动力学角度 开发的一系列改性策略已经显著提升了CN的光催化制氢性能. 近期, 金属原子修饰策略为CN改性提供了一条新途径, 这种策略可以精确调 控CN的微环境. 本文全面回顾了金属原子修饰的CN光催化剂在光催 化分解水制氢领域的最新研究进展, 包括金属单原子修饰的CN、金属 双原子修饰的CN、金属单原子与团簇共修饰的CN, 重点阐述了金属 原子对提升光催化性能的关键作用. 此外, 本文还全面总结了发展先进 的金属原子修饰的CN光催化剂所面临的挑战与机遇.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570

    Article  CAS  PubMed  Google Scholar 

  2. Song H, Luo S, Huang H, et al. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett, 2022, 7: 1043–1065

    Article  CAS  Google Scholar 

  3. Yu S, Li Y, Jiang A, et al. Solar-driven hydrogen evolution from value-added waste treatment. Adv Energy Mater, 2024, 14: 2304362

    Article  CAS  Google Scholar 

  4. Shen R, Ren D, Ding Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci China Mater, 2020, 63: 2153–2188

    Article  CAS  Google Scholar 

  5. Guan X, Zong S, Shen S. Homojunction photocatalysts for water splitting. Nano Res, 2022, 15: 10171–10184

    Article  CAS  Google Scholar 

  6. Song Y, Zheng X, Yang Y, et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution. Adv Mater, 2024, 36: 2305835

    Article  CAS  Google Scholar 

  7. Su H, Wang W, Shi R, et al. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application. Carbon Energy, 2023, 5: e280

    Article  CAS  Google Scholar 

  8. Zhang G, Lan ZA, Wang X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution. Angew Chem Int Ed, 2016, 55: 15712–15727

    Article  Google Scholar 

  9. Zhao C, Chen Z, Shi R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv Mater, 2020, 32: 1907296

    Article  CAS  Google Scholar 

  10. Thangamuthu M, Ruan Q, Ohemeng PO, et al. Polymer photoelectrodes for solar fuel production: progress and challenges. Chem Rev, 2022, 122: 11778–11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Xu H. Two-dimensional conjugated polymer frameworks for solar fuel generation from water. Prog Polym Sci, 2023, 145: 101734

    Article  CAS  Google Scholar 

  12. Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80

    Article  CAS  PubMed  Google Scholar 

  13. Ong WJ, Tan LL, Ng YH, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem Rev, 2016, 116: 7159–7329

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Liu X, Chaker M, et al. Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater Lett, 2021, 3: 663–697

    Article  CAS  Google Scholar 

  15. Zhao D, Guan X, Shen S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: A review. Environ Chem Lett, 2022, 20: 3505–3523

    Article  CAS  Google Scholar 

  16. Zhang Q, Chen J, Che H, et al. Recent advances in g-C3N4-based donor-acceptor photocatalysts for photocatalytic hydrogen evolution: An exquisite molecular structure engineering. ACS Mater Lett, 2022, 4: 2166–2186

    Article  CAS  Google Scholar 

  17. Wang Y, Zhao D, Deng H, et al. Theoretical insights into the limitation of photocatalytic overall water splitting performance of VIA group elements doped polymeric carbon nitride: A density functional theory calculation predicting solar-to-hydrogen efficiency. Sol RRL, 2021, 5: 2000630

    Article  CAS  Google Scholar 

  18. Zhao D, Wang Y, Dong CL, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy, 2021, 6: 388–397

    Article  CAS  Google Scholar 

  19. Niu P, Li L. Photocatalytic overall water splitting of carbon nitride by band-structure modulation. Matter, 2021, 4: 1765–1767

    Article  CAS  Google Scholar 

  20. Zong X, Jiang W, Sun Z. Efficient photocatalytic overall water splitting achieved with polymeric semiconductor-based Z-scheme heterostructures. Sci China Chem, 2021, 64: 875–876

    Article  CAS  Google Scholar 

  21. Pinaud BA, Benck JD, Seitz LC, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci, 2013, 6: 1983–2002

    Article  CAS  Google Scholar 

  22. Fabian DM, Hu S, Singh N, et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ Sci, 2015, 8: 2825–2850

    Article  CAS  Google Scholar 

  23. Wang B, Cai H, Zhao D, et al. Enhanced photocatalytic hydrogen evolution by partially replaced corner-site C atom with P in g-C3N4. Appl Catal B-Environ, 2019, 244: 486–493

    Article  Google Scholar 

  24. Zhao D, Dong CL, Wang B, et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv Mater, 2019, 31: 1903545

    Article  CAS  Google Scholar 

  25. Wang Y, Shen S. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Physico-Chim Sin, 2020, 36: 1905080–0

    Article  Google Scholar 

  26. Cheng C, Shi J, Wen L, et al. Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon, 2021, 181: 193–203

    Article  CAS  Google Scholar 

  27. Zhang Y, Huang Z, Dong CL, et al. Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem Eng J, 2022, 431: 134101

    Article  CAS  Google Scholar 

  28. Zhang Q, Chen X, Yang Z, et al. Precisely tailoring nitrogen defects in carbon nitride for efficient photocatalytic overall water splitting. ACS Appl Mater Interfaces, 2022, 14: 3970–3979

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347: 970–974

    Article  CAS  PubMed  Google Scholar 

  30. Cai H, Wang B, Xiong L, et al. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res, 2022, 15: 1128–1134

    Article  CAS  Google Scholar 

  31. Xue F, Si Y, Cheng C, et al. Electron transfer via homogeneous phosphorus bridges enabling boosted photocatalytic generation of H2 and H2O2 from pure water with stoichiometric ratio. Nano Energy, 2022, 103: 107799

    Article  CAS  Google Scholar 

  32. Zhao D, Wang M, Kong T, et al. Electronic pump boosting photocatalytic hydrogen evolution over graphitic carbon nitride. Mater Today Chem, 2019, 11: 296–302

    Article  CAS  Google Scholar 

  33. Zhu Y, Lv C, Yin Z, et al. A [001]-oriented Hittorfs phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew Chem Int Ed, 2020, 59: 868–873

    Article  CAS  Google Scholar 

  34. Zhou Q, Guo Y, Ye Z, et al. Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Mater Today, 2022, 58: 100–109

    Article  CAS  Google Scholar 

  35. Zhao D, Chen J, Dong CL, et al. Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. J Catal, 2017, 352: 491–497

    Article  CAS  Google Scholar 

  36. Wu B, Zhang L, Jiang B, et al. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew Chem Int Ed, 2021, 60: 4815–4822

    Article  CAS  Google Scholar 

  37. Chen B, Yu J, Wang R, et al. Three-dimensional ordered macroporous g-C3N4-Cu2O-TiO2 heterojunction for enhanced hydrogen production. Sci China Mater, 2022, 65: 139–146

    Article  CAS  Google Scholar 

  38. Zhu Q, Xu Z, Qiu B, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small, 2021, 17: 2101070

    Article  CAS  Google Scholar 

  39. Ling GZS, Ng SF, Ong WJ. Tailor-engineered 2D cocatalysts: Harnessing electron-hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv Funct Mater, 2022, 32: 2111875

    Article  CAS  Google Scholar 

  40. Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev, 2020, 120: 11986–12043

    Article  CAS  PubMed  Google Scholar 

  41. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Cai H, Shen S. Single metal atom photocatalysis. Small Methods, 2019, 3: 1800447

    Article  Google Scholar 

  43. Gao C, Low J, Long R, et al. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem Rev, 2020, 120: 12175–12216

    Article  CAS  PubMed  Google Scholar 

  44. Pan Y, Zhang C, Lin Y, et al. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci China Mater, 2020, 63: 921–948

    Article  CAS  Google Scholar 

  45. Xue ZH, Luan D, Zhang H, et al. Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6: 92–133

    Article  CAS  Google Scholar 

  46. Wei YS, Zhang M, Zou R, et al. Metal-organic framework-based catalysts with single metal sites. Chem Rev, 2020, 120: 12089–12174

    Article  CAS  PubMed  Google Scholar 

  47. Wu X, Zhang H, Zuo S, et al. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett, 2021, 13: 136

    Article  CAS  Google Scholar 

  48. Li Y, Kong T, Shen S. Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes. Small, 2019, 15: 1900772

    Article  Google Scholar 

  49. Teng Z, Zhang Q, Yang H, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal, 2021, 4: 374–384

    Article  CAS  Google Scholar 

  50. Zhou P, Li N, Chao Y, et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew Chem Int Ed, 2019, 58: 14184–14188

    Article  CAS  Google Scholar 

  51. Zhang L, Long R, Zhang Y, et al. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew Chem Int Ed, 2020, 59: 6224–6229

    Article  CAS  Google Scholar 

  52. Jin X, Wang R, Zhang L, et al. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew Chem Int Ed, 2020, 59: 6827–6831

    Article  CAS  Google Scholar 

  53. Xiao X, Gao Y, Zhang L, et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater, 2020, 32: 2003082

    Article  CAS  Google Scholar 

  54. Lin Z, Wang Y, Peng Z, et al. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv Energy Mater, 2022, 12: 2200716

    Article  CAS  Google Scholar 

  55. Liu Y, Sun Y, Zhao E, et al. Atomically dispersed silver-cobalt dual-metal sites synergistically promoting photocatalytic hydrogen evolution. Adv Funct Mater, 2023, 33: 2301840

    Article  CAS  Google Scholar 

  56. Bhavani P, Praveen Kumar D, Suk Yoo J, et al. Dual-atomic-site-integrated photocatalysts for green energy synthesis. Chem Eng J, 2023, 467: 143429

    Article  CAS  Google Scholar 

  57. Shen J, Luo C, Qiao S, et al. Single-atom Co-ultrafine RuOx clusters codecorated TiO2 nanosheets promote photocatalytic hydrogen evolution: modulating charge migration, H+ adsorption, and H2 desorption of active sites. Adv Funct Mater, 2024, 34: 2309056

    Article  CAS  Google Scholar 

  58. Zhang J, Pan Y, Feng D, et al. Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution. Adv Mater, 2023, 35: 2300902

    Article  CAS  Google Scholar 

  59. Li X, Bi W, Zhang L, et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater, 2016, 28: 2427–2431

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Wang Z, Xia T, et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv Mater, 2016, 28: 6959–6965

    Article  CAS  PubMed  Google Scholar 

  61. Su H, Che W, Tang F, et al. Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting. J Phys Chem C, 2018, 122: 21108–21114

    Article  CAS  Google Scholar 

  62. Cao Y, Wang D, Lin Y, et al. Single Pt atom with highly Vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl Energy Mater, 2018, 1: 6082–6088

    Article  CAS  Google Scholar 

  63. Zhou P, Lv F, Li N, et al. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy, 2019, 56: 127–137

    Article  CAS  Google Scholar 

  64. Zeng Z, Su Y, Quan X, et al. Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy, 2020, 69: 104409

    Article  CAS  Google Scholar 

  65. Hu Y, Qu Y, Zhou Y, et al. Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem Eng J, 2021, 412: 128749

    Article  CAS  Google Scholar 

  66. Mahvelati-Shamsabadi T, Bhamu KC, Lee S, et al. Coordinatively unsaturated atomically dispersed Pt+2-N4 sites on hexagonal nanosheet structure of g-C3N4 for high-performance photocatalytic H2 production. Appl Catal B-Environ, 2023, 337: 122959

    Article  CAS  Google Scholar 

  67. Zhai H, Tan P, Jiang M, et al. Electronic regulation of Pt single-atom catalysts via local coordination state adjustment for enhanced photocatalytic performance. ACS Catal, 2023, 13: 8063–8072

    Article  CAS  Google Scholar 

  68. Zhang Q, Yue M, Chen P, et al. Accelerating photocatalytic hydrogen production by anchoring Pt single atoms on few-layer g-C3N4 nanosheets with Pt-N coordination. J Mater Chem C, 2024, 12: 3437–3449

    Article  CAS  Google Scholar 

  69. Wang N, Wang J, Hu J, et al. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl Energy Mater, 2018, 1: 2866–2873

    Article  CAS  Google Scholar 

  70. Cao S, Li H, Tong T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv Funct Mater, 2018, 28: 1802169

    Article  Google Scholar 

  71. Liu L, Wu X, Wang L, et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun Chem, 2019, 2: 18

    Article  Google Scholar 

  72. Liu G, Lv H, Zeng Y, et al. Single-atom Pd-N3 sites on carbon-deficient g-C3N4 for photocatalytic H2 evolution. Trans Tianjin Univ, 2021, 27: 139–146

    Article  CAS  Google Scholar 

  73. Ren M, Zhang X, Liu Y, et al. Interlayer palladium-single-atom-coordinated cyano-group-rich graphitic carbon nitride for enhanced photocatalytic hydrogen production performance. ACS Catal, 2022, 12: 5077–5093

    Article  CAS  Google Scholar 

  74. Akinaga Y, Kawawaki T, Kameko H, et al. Metal single-atom cocatalyst on carbon nitride for the photocatalytic hydrogen evolution reaction: effects of metal species. Adv Funct Mater, 2023, 33: 2303321

    Article  CAS  Google Scholar 

  75. Xu R, Xu B, You X, et al. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J Mater Chem A, 2023, 11: 11202–11209

    Article  CAS  Google Scholar 

  76. Zeng L, Dai C, Liu B, et al. Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J Mater Chem A, 2019, 7: 24217–24221

    Article  CAS  Google Scholar 

  77. Li X, Zhao S, Duan X, et al. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl Catal B-Environ, 2021, 283: 119660

    Article  CAS  Google Scholar 

  78. Jiang XH, Zhang LS, Liu HY, et al. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew Chem Int Ed, 2020, 59: 23112–23116

    Article  CAS  Google Scholar 

  79. Li C, Dong X, Zhang Y, et al. Micro-tailored g-C3N4 enables Ru single-atom loading for efficient photocatalytic H2 evolution. Appl Surf Sci, 2020, 596: 153471

    Article  Google Scholar 

  80. Li C, Su N, Wu H, et al. Synergies of adjacent sites in atomically dispersed ruthenium toward achieving stable hydrogen evolution. Inorg Chem, 2022, 61: 13453–13461

    Article  CAS  PubMed  Google Scholar 

  81. Yu Z, Li Y, Torres-Pinto A, et al. Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Appl Catal B-Environ, 2022, 310: 121318

    Article  CAS  Google Scholar 

  82. Liu W, Cao L, Cheng W, et al. Single-site active cobalt-based photo-catalyst with a long carrier lifetime for spontaneous overall water splitting. Angew Chem Int Ed, 2017, 56: 9312–9317

    Article  CAS  Google Scholar 

  83. Cao Y, Chen S, Luo Q, et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew Chem Int Ed, 2017, 56: 12191–12196

    Article  CAS  Google Scholar 

  84. Shen S, Chen J, Wang Y, et al. Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Sci Bull, 2022, 67: 520–528

    Article  CAS  Google Scholar 

  85. Zhang H, Cao Y, Qin S, et al. Surface modification of carbon nitride with single Co sites via a solvent-driven strategy promoting high-efficiency photocatalytic overall water splitting. Appl Surf Sci, 2022, 581: 152328

    Article  CAS  Google Scholar 

  86. Wang Y, Xie D, Wang G, et al. Single-atomic Co-N4-O site boosting exciton dissociation and hole extraction for improved photocatalytic hydrogen evolution in crystalline carbon nitride. Nano Energy, 2022, 104: 107938

    Article  CAS  Google Scholar 

  87. Liu X, Mateen M, Cheng X, et al. Constructing atomic Co1-N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light. Int J Hydrogen Energy, 2022, 47: 12592–12604

    Article  CAS  Google Scholar 

  88. Kang N, Liao L, Zhang X, et al. Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution. Nano Res, 2024, doi: https://doi.org/10.1007/s12274-024-6411-1

  89. Li Y, Wang Y, Dong CL, et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem Sci, 2021, 12: 3633–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin Z, Zhang Z, Wang Y, et al. Anchoring single nickel atoms on carbon-vacant carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Chem Res Chin Univ, 2022, 38: 1243–1250

    Article  CAS  Google Scholar 

  91. Zhang W, Peng Q, Shi L, et al. Merging single-atom dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small, 2019, 15: 1905166

    Article  CAS  Google Scholar 

  92. Sun S, Shen G, Jiang J, et al. Boosting oxygen evolution kinetics by Mn-N-C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv Energy Mater, 2019, 9: 1901505

    Article  Google Scholar 

  93. Zhang F, Zhang J, Wang H, et al. Single tungsten atom steered bandgap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution. Chem Eng J, 2021, 424: 130004

    Article  CAS  Google Scholar 

  94. Jiang W, Zhao Y, Zong X, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew Chem Int Ed, 2021, 60: 6124–6129

    Article  CAS  Google Scholar 

  95. Wang K, Jiang L, Xin T, et al. Single-atom V-N charge-transfer bridge on ultrathin carbon nitride for efficient photocatalytic H2 production and formaldehyde oxidation under visible light. Chem Eng J, 2022, 429: 132229

    Article  CAS  Google Scholar 

  96. Zhao D, Wang Y, Dong CL, et al. Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett, 2022, 14: 223

    Article  CAS  Google Scholar 

  97. Mateen M, Cheong WC, Zheng C, et al. Molybdenum atomic sites embedded 1D carbon nitride nanotubes as highly efficient bifunctional photocatalyst for tetracycline degradation and hydrogen evolution. Chem Eng J, 2023, 451: 138305

    Article  CAS  Google Scholar 

  98. Shao W, Yu M, Xu X, et al. Design of a single-atom In-N3-S site to modulate exciton behavior in carbon nitride for enhanced photocatalytic performance. Small, 2023, 2306567

  99. Li Y, Sun Y, Qin Y, et al. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv Energy Mater, 2020, 10: 1903120

    Article  CAS  Google Scholar 

  100. Zhang F, Zhu Y, Lin Q, et al. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci, 2021, 14: 2954–3009

    Article  CAS  Google Scholar 

  101. Yao Y, Wang S, Li Z, et al. Atomic level engineering of noble metal nanocrystals for energy conversion catalysis. J Energy Chem, 2021, 63: 604–624

    Article  CAS  Google Scholar 

  102. Li H, Li R, Liu G, et al. Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis. Adv Mater, 2023, 2301307

  103. Pang Y, Li P, Ma X, et al. Metal-doped carbon nitride: An all-in-one photocatalyst. EES Catal, 2023, 1: 810–831

    Article  CAS  Google Scholar 

  104. Su H, Liu M, Cheng W, et al. Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. J Mater Chem A, 2019, 7: 11170–11176

    Article  CAS  Google Scholar 

  105. Wang G, Zhang C, Zhao W, et al. Bonding interaction of adjacent pt and ag single-atom pairs on carbon nitride efficiently promotes photocatalytic H2 production. CCS Chem, 2023, 1–12

  106. Liu L, Meira DM, Arenal R, et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal, 2019, 9: 10626–10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu Y, Yang W, Chen Q, et al. Pt particle size affects both the charge separation and water reduction efficiencies of CdS-Pt nanorod photocatalysts for light driven H2 generation. J Am Chem Soc, 2022, 144: 2705–2715

    Article  CAS  PubMed  Google Scholar 

  108. Yan B, He Y, Yang G. Electronic structure regulation of cobalt oxide clusters for promoting photocatalytic hydrogen evolution. J Mater Chem A, 2022, 10: 1899–1908

    Article  CAS  Google Scholar 

  109. Huang Y, Li D, Feng S, et al. Pt atoms/clusters on Ni-phytate-sensitized carbon nitride for enhanced NIR-light-driven overall water splitting beyond 800 nm. Angew Chem, 2022, 134: e202212234

    Article  Google Scholar 

  110. Xu BB, Fu XB, You XM, et al. Synergistic promotion of single-atom Co surrounding a PtCo alloy based on a g-C3N4 nanosheet for overall water splitting. ACS Catal, 2022, 12: 6958–6967

    Article  CAS  Google Scholar 

  111. Du XL, Wang XL, Li YH, et al. Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem Commun, 2017, 53: 9402–9405

    Article  CAS  Google Scholar 

  112. Gao M, Tian F, Zhang X, et al. Improved plasmonic hot-electron capture in Au nanoparticle/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett, 2023, 15: 129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52225606 and 52172248), Shenzhen Science and Technology Program (2023A010), the “Fundamental Research Funds for the Central Universities”, and “The Youth Innovation Team of Shaanxi Universities”.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhao D and Shen S wrote the paper; Yang Y prepared the figures; Shen S and Binas V conceived the idea and supervised the project. All authors contributed to the general discussion.

Corresponding author

Correspondence to Shaohua Shen  (沈少华).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Daming Zhao received his PhD degree in engineering from the International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University in 2020. He is currently an associate professor at Shenzhen Campus of Sun Yat-sen University. He has always been committed to the research and development of photocatalytic/photoelectrochemical solar chemical conversion, and has published many first-authored papers in top journals such as Nature Energy and Advanced Materials.

Shaohua Shen obtained his Bachelor degree in applied chemistry in 2004 and PhD degree in thermal engineering in 2010 from Xi’an Jiaotong University. During 2008–2009 and 2011–2012, he worked as a guest researcher at Lawrence Berkeley National Laboratory and a postdoctoral researcher at the University of California at Berkeley. He is currently a professor at Xi’an Jiaotong University, China, honored the National Science Foundation for Distinguished Young Scholars, China Youth Science and Technology Award, National Top-notch Young Professionals and Young Scholars of the Yangtze River in China. His research interests include the synthesis of nanomaterials and the development of devices for photocatalytic and photoelectrochemical solar energy conversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Yang, Y., Binas, V. et al. Metal atom-induced microenvironment regulation in polymeric carbon nitride for photocatalytic hydrogen evolution. Sci. China Mater. 67, 1765–1779 (2024). https://doi.org/10.1007/s40843-024-2870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2870-1

Keywords

Navigation