Skip to main content
Log in

Expanding the landscape of anti-MoS2 monolayers: computational exploration of stability and multifaceted properties across the periodic table

拓展anti-MoS2单层结构的疆域: 稳定性和功能性的 理论研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Inspired by the distinctive structural and electronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs), we conducted comprehensive high-throughput first-principles computations to screen stable 2D chalcogenides X2T (X = transition metals Sc–Hg, totally 29 and main group elements Li–Ba, totally 37; T = S, Se, and Te) with anti-MoS2 configurations in both 1T and 2H phases. Among 396 evaluated candidates, the selected X2T monolayers (X = Sc, Fe, Y, Zr, Nb, Hf, Ta, IA elements Li–Fr, IIA elements Ca–Ra, N, In, Tl, and Te; T = S, Se, or Te) demonstrate outstanding thermodynamic, dynamic, mechanical properties, and thermal stabilities in 1T/1T′ or 2H phases. These anti-MoS2 variants exhibit diverse characteristics, serving as nonmagnetic/magnetic metals or nonmagnetic/antiferromagnetic semiconductors, often surpassing MoS2 in Young’s modulus and/or displaying negative Poisson’s ratios. Transition-metal-based monolayers show susceptibility to O2 oxidization, and some show high N2 dissociation activity. Oxygen/nitrogen-terminations can quench TM magnetism and increase band-gaps over their pristine counterparts. Notably, the 2H-Fe2S monolayer maintains robust antiferromagnetism upon O-termination. Moreover, TM-based X2T sheets demonstrate promise as efficient electrocatalysts for hydrogen evolution reactions. This study expands the diversity of 2D materials with new members and novel functional properties and broadens their potential applications.

摘要

受二维(2D)过渡金属硫族化合物(TMDs)独特结构和电子性质的 启发, 我们通过高通量第一性原理计算, 筛选了稳定的具有anti-MoS2结 构(1T和2H相)的2D硫族化合物X2T (X = 过渡金属Sc–Hg和主族元素 Li–Ba; T = S、Se和Te). 在经过评估的396个候选物中, 超过50个X2T (X = Sc, Fe, Y, Zr, Nb, Hf, Ta, IA元素Li–Fr, IIA元素Ca–Ra, N, In, Tl和 Te; T = S、Se或Te)单层材料在1T/1T′或2H相中表现出优异的热力学、 动力学、力学和热学稳定性. 这些anti-MoS2二维材料表现出多样的特 性, 可以是非磁性/磁性金属或非磁性/反铁磁性半导体, 杨氏模量常超 过MoS2, 并可能具有负泊松比. 基于过渡金属的单层容易被O2氧化, 其 中一些表现出高N2解离活性. 氧/氮表面饱和可以抑制过渡金属磁性并 增加材料的能带间隙. 值得注意的是, 在表面原子被氧饱和后, 2H-Fe2S 单层仍能保持强大的反铁磁性. 此外, 基于过渡金属的X2T薄片有望作 为高效析氢反应的电催化剂. 这项研究为二维材料领域增添了新成员, 提供了多样的性质与功能, 并拓宽了它们的潜在应用领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  PubMed  Google Scholar 

  2. Tang Q, Zhou Z, Chen Z. Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5: 4541–4583

    Article  CAS  PubMed  Google Scholar 

  3. Tang Q, Zhou Z, Chen Z. Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput Mol Sci, 2015, 5: 360–379

    Article  CAS  Google Scholar 

  4. Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev, 2014, 43: 6537–6554

    Article  PubMed  Google Scholar 

  5. Shen J, Zhu Y, Jiang H, et al. 2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 2016, 11: 483–520

    Article  CAS  Google Scholar 

  6. Yang W, Zhang X, Xie Y. Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today, 2016, 11: 793–816

    Article  CAS  Google Scholar 

  7. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331

    Article  CAS  PubMed  Google Scholar 

  8. Lei Y, Zhang T, Lin YC, et al. Graphene and beyond: Recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci Au, 2022, 2: 450–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotech, 2018, 13: 246–252

    Article  CAS  Google Scholar 

  10. Zhang X, Zhang Z, Yao S, et al. An effective method to screen sodium-based layered materials for sodium ion batteries. npj Comput Mater, 2018, 4: 13

    Article  Google Scholar 

  11. Guo Z, Zhou J, Zhu L, et al. MXene: A promising photocatalyst for water splitting. J Mater Chem A, 2016, 4: 11446–11452

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang Z, Wu D, et al. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods, 2018, 2: 1700359

    Article  Google Scholar 

  13. Ming W, Yoon M, Du MH, et al. First-principles prediction of thermodynamically stable two-dimensional electrides. J Am Chem Soc, 2016, 138: 15336–15344

    Article  CAS  PubMed  Google Scholar 

  14. Tong CJ, Zhang H, Zhang YN, et al. New manifold two-dimensional single-layer structures of zinc-blende compounds. J Mater Chem A, 2014, 2: 17971–17978

    Article  CAS  Google Scholar 

  15. Bai Y, Luo G, Meng L, et al. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts. Phys Chem Chem Phys, 2018, 20: 14619–14626

    Article  CAS  PubMed  Google Scholar 

  16. Shao Y, Shi X, Pan H. Electronic, magnetic, and catalytic properties of thermodynamically stable two-dimensional transition-metal phosphides. Chem Mater, 2017, 29: 8892–8900

    Article  CAS  Google Scholar 

  17. Wang J, Yang X, Cao J, et al. Computational study of the electronic, optical and photocatalytic properties of single-layer hexagonal zinc chalcogenides. Comput Mater Sci, 2018, 150: 432–438

    Article  CAS  Google Scholar 

  18. Lucking MC, Xie W, Choe DH, et al. Traditional semiconductors in the two-dimensional limit. Phys Rev Lett, 2018, 120: 086101

    Article  CAS  PubMed  Google Scholar 

  19. Wu Q, Zhang Y, Zhou Q, et al. Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity. J Phys Chem Lett, 2018, 9: 4260–4266

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Hang Y, Liu L, et al. A large family of synthetic two-dimensional metal hydrides. J Am Chem Soc, 2019, 141: 7899–7905

    Article  CAS  PubMed  Google Scholar 

  21. Gu J, Zhao Z, Huang J, et al. MX anti-MXenes from non-van der Waals bulks for electrochemical applications: The merit of metallicity and active basal plane. ACS Nano, 2021, 15: 6233–6242

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Pan YH, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun, 2020, 11: 2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Li W, Li F, et al. Computational discovery of diverse functionalities in two-dimensional square disulfide monolayers: auxetic behavior, high curie temperature ferromagnets, electrocatalysts, and photocatalysts. J Mater Chem A, 2023, 11: 20254–20269

    Article  CAS  Google Scholar 

  24. Liu Y, Wang SY, Li F. A new 2D Janus family with multiple properties: Auxetic behavior, straintunable photocatalyst, high Curie temperature ferromagnets, and piezoelectric quantum anomalous Hall insulator. Sci China Mater, 2024, 67: 1160–1172

    Google Scholar 

  25. Lv X, Yu L, Li F, et al. Penta-MS2 (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson’s ratios and tunable bandgaps as water-splitting photocatalysts. J Mater Chem A, 2021, 9: 6993–7004

    Article  CAS  Google Scholar 

  26. Heine T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties. Acc Chem Res, 2015, 48: 65–72

    Article  CAS  PubMed  Google Scholar 

  27. Chia X, Eng AYS, Ambrosi A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev, 2015, 115: 11941–11966

    Article  CAS  PubMed  Google Scholar 

  28. Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev, 2015, 44: 2584–2586

    Article  CAS  PubMed  Google Scholar 

  29. Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 2015, 44: 2713–2731

    Article  CAS  PubMed  Google Scholar 

  30. Tan C, Lai Z, Zhang H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv Mater, 2017, 29: 1701392

    Article  Google Scholar 

  31. Martella C, Mennucci C, Lamperti A, et al. Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv Mater, 2018, 30: 1705615

    Article  Google Scholar 

  32. Ganatra R, Zhang Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano, 2014, 8: 4074–4099

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Zhu H. Two-dimensional MoS2: Properties, preparation, and applications. J Materiomics, 2015, 1: 33–44

    Article  Google Scholar 

  35. Kumar NA, Dar MA, Gul R, et al. Graphene and molybdenum disulfide hybrids: Synthesis and applications. Mater Today, 2015, 18: 286–298

    Article  CAS  Google Scholar 

  36. Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  PubMed  Google Scholar 

  37. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    Article  CAS  Google Scholar 

  38. Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80

    Article  CAS  PubMed  Google Scholar 

  39. Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech, 2013, 8: 952–958

    Article  CAS  Google Scholar 

  40. Chia X, Ambrosi A, Sofer Z, et al. Anti-MoS2 nanostructures: Tl2S and its electrochemical and electronic properties. ACS Nano, 2016, 10: 112–123

    Article  CAS  PubMed  Google Scholar 

  41. Ketelaar JAA, Gorter EW. Die kristallstruktur von thallosulfid (Tl2S). Z Kristallogr-Crystal Mater, 1939, 101: 367–375

    Article  CAS  Google Scholar 

  42. Giester G, Lengauer CL, Tillmanns E, et al. Tl2S: Re-determination of crystal structure and stereochemical discussion. J Solid State Chem, 2002, 168: 322–330

    Article  CAS  Google Scholar 

  43. Shen S, Liang Y, Ma Y, et al. Tl2S: A metal-shrouded two-dimensional semiconductor. Phys Chem Chem Phys, 2018, 20: 14778–14784

    Article  CAS  PubMed  Google Scholar 

  44. Song N, Wang Y, Yu W, et al. Electronic, magnetic properties of transition metal doped Tl2S: First-principles study. Appl Surf Sci, 2017, 425: 393–399

    Article  CAS  Google Scholar 

  45. Rawat A, Arora A, De Sarkar A. Interfacing 2D M2X (M = Na, K, Cs; X = O, S, Se, Te) monolayers for 2D excitonic and tandem solar cells. Appl Surf Sci, 2021, 563: 150304

    Article  CAS  Google Scholar 

  46. Sneha G, Chellaiya Thomas Rueshwin S, Eithiraj RD. Structural, electronic, optical, and thermoelectric properties of 2D honeycomb-like 1T-Rb2S monolayer: A DFT study. J Phys Chem Solids, 2023, 181: 111560

    Article  CAS  Google Scholar 

  47. Rasmussen FA, Thygesen KS. Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides. J Phys Chem C, 2015, 119: 13169–13183

    Article  CAS  Google Scholar 

  48. Li Y, Su L, Lu Y, et al. High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the Schottky-Mott limit. InfoMat, 2023, 5: e12407

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  50. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  51. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  52. Bučko T, Hafner J, Lebègue S, et al. Improved description of the structure of molecular and layered crystals: Ab initio DFT calculations with van der Waals corrections. J Phys Chem A, 2010, 114: 11814–11824

    Article  PubMed  Google Scholar 

  53. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  54. Liechtenstein AI, Anisimov VI, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B, 1995, 52: R5467–R5470

    Article  CAS  Google Scholar 

  55. Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B, 1998, 57: 1505–1509

    Article  CAS  Google Scholar 

  56. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  57. Martyna GJ, Klein ML, Tuckerman M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J Chem Phys, 1992, 97: 2635–2643

    Article  Google Scholar 

  58. Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys, 2001, 73: 515–562

    Article  CAS  Google Scholar 

  59. Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23

    Article  Google Scholar 

  60. Greeley J, Jaramillo TF, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2005, 5: 909–913

    Article  Google Scholar 

  61. Harbrecht B, Franzen HF. Die cristallstruktur von HfxTi21−xS8 (x = 7.47). Z Kristallogr Cryst Mater, 1989, 186: 119–120

    Google Scholar 

  62. Hughbanks T. Exploring the metal-rich chemistry of the early transition elements. J Alloys Compd, 1995, 229: 40–53

    Article  CAS  Google Scholar 

  63. Li Y, Liao Y, Chen Z. Be2C monolayer with quasi-planar hexacoordinate carbons: A global minimum structure. Angew Chem Int Ed, 2014, 53: 7248–7252

    Article  CAS  Google Scholar 

  64. Feng B, Ding Z, Meng S, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett, 2012, 12: 3507–3511

    Article  CAS  PubMed  Google Scholar 

  65. Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett, 2012, 108: 245501

    Article  PubMed  Google Scholar 

  66. Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotech, 2014, 9: 372–377

    Article  CAS  Google Scholar 

  67. Liu H, Neal AT, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8: 4033–4041

    Article  CAS  PubMed  Google Scholar 

  68. Ding Y, Wang Y. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J Phys Chem C, 2013, 117: 18266–18278

    Article  CAS  Google Scholar 

  69. Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388

    Article  CAS  PubMed  Google Scholar 

  70. Li X, Zhang S, Wang Q. Stability and physical properties of a tri-ring based porous g-C4N3 sheet. Phys Chem Chem Phys, 2013, 15: 7142–7146

    Article  CAS  PubMed  Google Scholar 

  71. Zeng F, Zhang WB, Tang BY. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin Phys B, 2015, 24: 097103

    Article  Google Scholar 

  72. Mortazavi B, Shahrokhi M, Makaremi M, et al. Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Appl Mater Today, 2017, 9: 292–299

    Article  Google Scholar 

  73. Yin J, Wu B, Wang Y, et al. Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M2P (Mo2P, W2P, Nb2P and Ta2P). J Phys-Condens Matter, 2018, 30: 135701

    Article  PubMed  Google Scholar 

  74. Naseri M, Abutalib MM, Alkhambashi M, et al. Density functional theory based prediction of a new two-dimensional TeSe2 semiconductor: A case study on the electronic properties. Chem Phys Lett, 2018, 707: 160–164

    Article  CAS  Google Scholar 

  75. Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys Rev Lett, 2017, 119: 106101

    Article  PubMed  Google Scholar 

  76. Zacharia R, Ulbricht H, Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B, 2004, 69: 155406

    Article  Google Scholar 

  77. Fang Z, Li X, Shi W, et al. Interlayer binding energy of hexagonal MoS2 as determined by an in situ peeling-to-fracture method. J Phys Chem C, 2020, 124: 23419–23425

    Article  CAS  Google Scholar 

  78. Zhao S, Li Z, Yang J. Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design. J Am Chem Soc, 2014, 136: 13313–13318

    Article  CAS  PubMed  Google Scholar 

  79. Mondal A, Vomiero A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv Funct Mater, 2022, 32: 2208994

    Article  CAS  Google Scholar 

  80. Ling C, Shi L, Ouyang Y, et al. Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Adv Sci, 2016, 3: 1600180

    Article  Google Scholar 

  81. Ling C, Shi L, Ouyang Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater, 2016, 28: 9026–9032

    Article  CAS  Google Scholar 

  82. Bai X, Ling C, Shi L, et al. Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Sci Bull, 2018, 63: 1397–1403

    Article  CAS  Google Scholar 

  83. Naseri M, Lin S. 2D Li2S monolayer: A global minimum lithium sulfide sandwich. Chem Phys Lett, 2019, 722: 58–63

    Article  CAS  Google Scholar 

  84. Li F, Lv X, Gu J, et al. Semiconducting SN2 monolayer with three-dimensional auxetic properties: A global minimum with tetra-coordinated sulfurs. Nanoscale, 2020, 12: 85–92

    Article  CAS  PubMed  Google Scholar 

  85. Xian L, Pérez Paz A, Bianco E, et al. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater, 2017, 4: 041003

    Article  Google Scholar 

  86. Wu B, Yin J, Ding Y, et al. A new two-dimensional TeSe2 semiconductor: Indirect to direct band-gap transitions. Sci China Mater, 2017, 60: 747–754

    Article  CAS  Google Scholar 

  87. Ma Y, Kou L, Dai Y, et al. Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te (M = Cu, Ag). Phys Rev B, 2016, 93: 235451

    Article  Google Scholar 

  88. Guo Y, Wu Q, Li Y, et al. Copper(I) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horiz, 2019, 4: 223–230

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, Li T, Nie G, et al. Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu2S monolayer. Nanoscale, 2019, 11: 10306–10313

    Article  CAS  PubMed  Google Scholar 

  90. Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359

    Article  CAS  PubMed  Google Scholar 

  91. Kang SH, Bang J, Chung K, et al. Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction. Sci Adv, 2020, 6: eaba7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kang SH, Thapa D, Regmi B, et al. Chemically stable low-dimensional electrides in transition metal-rich monochalcogenides: Theoretical and experimental explorations. J Am Chem Soc, 2022, 144: 4496–4506

    Article  CAS  PubMed  Google Scholar 

  93. Zhou J, Zhu C, Zhou Y, et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat Mater, 2023, 22: 450–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11828401, 11964024 and 12364038), the “Grassland Talents” Project of the Inner Mongolia Autonomous Region (12000-12102613), as well as the Young Science and Technology Talents Cultivation Project of Inner Mongolia University (21200-5223708). We also thank the PARATEAR for the computational support.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions The initial idea was developed by Li F and Chen Z. Li F, Liu Y, Yu L, Lv X and Jin P performed the calculations under Chen Z’s supervision. All authors participated in the data analysis and writing and read the paper. Li F and Chen Z managed the project.

Corresponding authors

Correspondence to Fengyu Li  (李锋钰) or Zhongfang Chen  (陈中方).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supporting Information Supporting data are available in the online version of the paper.

Fengyu Li received her PhD degree from Dalian University of Technology (2012) and University of Puerto Rico (2014). After spending two years at the University of Puerto Rico as a postdoc researcher, she served as a professor at Inner Mongolia University. Her research mainly focuses on low-dimensional materials design and simulation from the first-principles and machine learning.

Yu Liu obtained his master’s degree from Inner Mongolia University in 2020. After that, he continued his education as a PhD candidate under the supervision of Prof. Fengyu Li. His research focuses on theoretical design and physical property exploration of novel two-dimensional materials based on the first-principles calculations.

Linke Yu obtained his master’s degree from Inner Mongolia University in 2023 under the supervision of Prof. Fengyu Li. Afterward, he continued his PhD studies at the Southern University of Science and Technology under the supervision of Prof. Lei Li. His research interests include theoretical design and catalytic mechanism of novel nanomaterials based on the first-principles.

Xiaodong Lv received his PhD degree from Inner Mongolia University in 2020, and then had been a postdoctoral researcher at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences for two years. He is currently serving as an associate professor at Inner Mongolia Normal University. His main research focuses on the theoretical investigation of structure design and low-dimensional energy storage materials and devices.

Zhongfang Chen earned his PhD degree from Nankai University in 2000, and joined the University of Puerto Rico in 2008. His laboratory focuses on computational studies of nanomaterials, aiming to design new materials for energy, environmental, and health applications. Dr. Chen’s group collaborates closely with experimental researchers, successfully turning theoretical predictions into real-world materials, and emphasizes high-throughput computations, machine learning, and big data to innovate in these fields.

Supporting Information

40843_2024_2861_MOESM1_ESM.pdf

Expanding the landscape of anti-MoS2 monolayers: computational exploration of stability and multifaceted properties across the periodic table

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, Y., Yu, L. et al. Expanding the landscape of anti-MoS2 monolayers: computational exploration of stability and multifaceted properties across the periodic table. Sci. China Mater. 67, 1260–1272 (2024). https://doi.org/10.1007/s40843-024-2861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2861-2

Keywords

Navigation