Skip to main content
Log in

Facile defect engineering in ZnIn2S4 nanosheets for enhanced NIR-driven H2 evolution

缺陷工程调控ZnIn2S4纳米片用于增强近红外驱动制氢

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) light-driven water splitting to produce hydrogen (H2) has long been of great interest in photocatalysis, but it remains a formidable challenge so far due to both kinetic and thermodynamic shortcomings. To break through this limitation, we demonstrate a noble metal-free two-dimensional ZnIn2S4-based photocatalyst rich in sulfur vacancies via a facile hydrothermal method and firstly realized NIR-driven H2 production beyond 800 nm using single component ZnIn2S4-based materials. We disclosed the existence of an efficient Urbach tail transition to absorb long-wavelength NIR light according to the valence-band spectra, ultraviolet-visible-NIR diffuse reflectance spectra, steady-state photoluminescence spectra, transient photocurrent response, and electron paramagnetic resonance measurements. The successful construction of sulfur vacancies in ZnIn2S4 nanosheets not only extends the spectral absorption range but also has an excellent carrier diffusion property as well as an abundance of active sites. Therefore, our findings may provide an effective and promising perspective for the future development of NIR-responsive ZnIn2S4-based photocatalysts for highly efficient H2 production.

摘要

近红外(NIR)光驱动水分解产生氢气(H2)一直以来都是光催化领 域备受关注的问题, 但由于其动力学和热力学方面的缺陷, 迄今为止仍 是一项艰巨的挑战. 为了突破这一限制, 我们通过简便的水热法设计出 了富含硫空位的无贵金属二维(2D) ZnIn2S4-基光催化剂, 并首次使用 单组分ZnIn2S4-基材料实现了波长大于800 nm的近红外驱动制氢性能. 根据价带光谱、紫外-可见-近红外DRS光谱、稳态PL光谱、瞬态光电 流响应和EPR表征, 我们揭示了存在一个高效的Urbach带尾吸收用于 捕获近红外光. 硫空位在ZnIn2S4纳米片中的成功构建不仅扩展了光谱 吸收范围, 而且具有出色的载流子扩散特性和丰富的活性位点. 因此, 我们的研究结果可能会为未来开发近红外响应的ZnIn2S4-基光催化剂 用于实现高效近红外驱动制氢提供一定的指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee WH, Lee CW, Cha GD, et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat Nanotechnol, 2023, 18: 754–762

    Article  CAS  PubMed  Google Scholar 

  2. Ye S, Li J, Feng Y, et al. Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light. Sci China Mater, 2023, 66: 3146–3154

    Article  CAS  Google Scholar 

  3. Nishiyama H, Yamada T, Nakabayashi M, et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598: 304–307

    Article  CAS  PubMed  Google Scholar 

  4. Zhou P, Navid IA, Ma Y, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature, 2023, 613: 66–70

    Article  CAS  PubMed  Google Scholar 

  5. Kosco J, Gonzalez-Carrero S, Howells CT, et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat Energy, 2022, 7: 340–351

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal, 2018, 1: 756–763

    Article  CAS  Google Scholar 

  9. Xin X, Li Y, Zhang Y, et al. Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting. Nat Commun, 2024, 15: 337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80

    Article  CAS  PubMed  Google Scholar 

  11. Hu H, Wang Z, Cao L, et al. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat Chem, 2021, 13: 358–366

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Chu X, Zhang HY, et al. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat Commun, 2023, 14: 593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang Y, Li D, Feng S, et al. Pt atoms/clusters on Ni-phytate-sensitized carbon nitride for enhanced NIR-light-driven overall water splitting beyond 800 nm. Angew Chem Int Ed, 2022, 61: e202212234

    Article  CAS  Google Scholar 

  14. Wang L, Sa R, Wei Y, et al. Near-infrared light-driven photoredox catalysis by transition-metal-complex nanodots. Angew Chem Int Ed, 2022, 61: e202204561

    Article  CAS  Google Scholar 

  15. Jiang L, Zhou S, Yang J, et al. Near-infrared light responsive TiO2 for efficient solar energy utilization. Adv Funct Mater, 2021, 32: 2108977

    Article  Google Scholar 

  16. Tian Q, Yao W, Wu W, et al. NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horiz, 2019, 4: 10–25

    Article  CAS  PubMed  Google Scholar 

  17. Cai Y, Luo F, Guo Y, et al. Near-infrared light driven ZnIn2S4-based photocatalysts for environmental and energy applications: Progress and perspectives. Molecules, 2023, 28: 2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu M, Zhai C, Fujitsuka M, et al. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black phosphorus/WS2. Appl Catal B-Environ, 2018, 221: 645–651

    Article  CAS  Google Scholar 

  19. Xu X, Luo F, Tang W, et al. Enriching hot electrons via NIR-photonexcited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Adv Funct Mater, 2018, 28: 1804055

    Article  Google Scholar 

  20. Lian Z, Kobayashi Y, Vequizo JJM, et al. Harnessing infrared solar energy with plasmonic energy upconversion. Nat Sustain, 2022, 5: 1092–1099

    Article  Google Scholar 

  21. Lian Z, Wu F, Zi J, et al. Infrared light-induced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution. J Am Chem Soc, 2023, 145: 15482–15487

    Article  CAS  PubMed  Google Scholar 

  22. Lian Z, Sakamoto M, Vequizo JJM, et al. Plasmonic p-n junction for infrared light to chemical energy conversion. J Am Chem Soc, 2019, 141: 2446–2450

    Article  CAS  PubMed  Google Scholar 

  23. Lian Z, Wu F, Zhong Y, et al. Tuning plasmonic p-n junction for efficient infrared-light-responsive hydrogen evolution. Appl Catal B-Environ, 2022, 318: 121860

    Article  CAS  Google Scholar 

  24. Shi W, Chen Z, Lu J, et al. Construction of ZrC@ZnIn2S4 core-shell heterostructures for boosted near-infrared-light driven photothermal-assisted photocatalytic H2 evolution. Chem Eng J, 2023, 474: 145690

    Article  CAS  Google Scholar 

  25. Chen Z, Shi Y, Lu J, et al. Three-dimensional NaYF4:Yb3+/Tm3+ hexagonal prisms coupled with ZnIn2S4 nanosheets for boosting near-infrared photocatalytic H2 evolution. J Environ Chem Eng, 2022, 10: 108352

    Article  CAS  Google Scholar 

  26. Li N, Fan H, Dai Y, et al. Insight into the solar utilization of a novel Z-scheme Cs0.33WO3/CdS heterostructure for UV–Vis-NIR driven photocatalytic hydrogen evolution. Appl Surf Sci, 2020, 508: 145200

    Article  CAS  Google Scholar 

  27. Xue W, Sun H, Hu X, et al. UV-VIS-NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: Surface plasmon effect coupled with S-scheme charge transfer. Chin J Catal, 2022, 43: 234–245

    Article  CAS  Google Scholar 

  28. Zhang G, Guan Z, Yang J, et al. Metal sulfides for photocatalytic hydrogen production: Current development and future challenges. Sol RRL, 2022, 6: 2200587

    Article  CAS  Google Scholar 

  29. Xiao B, Lv T, Zhao J, et al. Synergistic effect of the surface vacancy defects for promoting photocatalytic stability and activity of ZnS nanoparticles. ACS Catal, 2021, 11: 13255–13265

    Article  CAS  Google Scholar 

  30. Du C, Zhang Q, Lin Z, et al. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl Catal B-Environ, 2019, 248: 193–201

    Article  CAS  Google Scholar 

  31. Wang Y, Liu M, Wu C, et al. Hollow nanoboxes Cu2−xS@ZnIn2S4 core-shell S-scheme heterojunction with broad-spectrum response and enhanced photothermal-photocatalytic performance. Small, 2022, 18: 2202544

    Article  CAS  Google Scholar 

  32. Wei L, Chen Y, Lin Y, et al. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl Catal B-Environ, 2014, 144: 521–527

    Article  CAS  Google Scholar 

  33. Zhang S, Liu X, Liu C, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano, 2018, 12: 751–758

    Article  CAS  PubMed  Google Scholar 

  34. Hu S, Jin L, Si W, et al. Sulfur vacancies enriched 2D ZnIn2S4 nanosheets for improving photoelectrochemical performance. Catalysts, 2022, 12: 400

    Article  CAS  Google Scholar 

  35. Zhang X, Zhao Z, Zhang W, et al. Surface defects enhanced visible light photocatalytic H2 production for Zn-Cd-S solid solution. Small, 2015, 12: 793–801

    Article  PubMed  Google Scholar 

  36. Xu B, He P, Liu H, et al. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew Chem Int Ed, 2014, 53: 2339–2343

    Article  CAS  Google Scholar 

  37. Qin B, Li Y, Wang H, et al. Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies. Nano Energy, 2019, 60: 43–51

    Article  CAS  Google Scholar 

  38. Jiao X, Chen Z, Li X, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J Am Chem Soc, 2017, 139: 7586–7594

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Chen Y, Zhou W, et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J Mater Chem A, 2017, 5: 8451–8460

    Article  CAS  Google Scholar 

  40. Wu X, Li D, Luo B, et al. Molecular-level insights on NIR-driven photocatalytic H2 generation with ultrathin porous S-doped g-C3N4 nanosheets. Appl Catal B-Environ, 2023, 325: 122292

    Article  CAS  Google Scholar 

  41. Tu W, Xu Y, Wang J, et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain Chem Eng, 2017, 5: 7260–7268

    Article  CAS  Google Scholar 

  42. Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev, 1953, 92: 1324

    Article  CAS  Google Scholar 

  43. Tang JY, Kong XY, Ng BJ, et al. Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal Sci Technol, 2019, 9: 2335–2343

    Article  CAS  Google Scholar 

  44. Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem Rev, 2020, 120: 919–985

    Article  CAS  PubMed  Google Scholar 

  45. Xiao M, Wang Z, Lyu M, et al. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv Mater, 2019, 31: 1801369

    Article  Google Scholar 

  46. Tao X, Zhao Y, Wang S, et al. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem Soc Rev, 2022, 51: 3561–3608

    Article  CAS  PubMed  Google Scholar 

  47. Ou H, Chen X, Lin L, et al. Biomimetic donor-acceptor motifs in conjugated polymers for promoting exciton splitting and charge separation. Angew Chem Int Ed, 2018, 57: 8729–8733

    Article  CAS  Google Scholar 

  48. Huang Y, Li D, Fang Z, et al. Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution. Appl Catal B-Environ, 2019, 254: 128–134

    Article  CAS  Google Scholar 

  49. Lin S, Wu B, Li Q, et al. Rod-shaped aggregates of sulfur-doped carbon nitride nanosheets for enhanced photocatalytic hydrogen evolution. Sci China Mater, 2023, 66: 4669–4679

    Article  CAS  Google Scholar 

  50. Tang Y, Zhou P, Chao Y, et al. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Sci China Mater, 2019, 62: 351–358

    Article  CAS  Google Scholar 

  51. Yu R, Luo B, Chen M, et al. Construction of Cu7.2S4/g-C3N4 photocatalyst for efficient NIR photocatalysis of H2 production. Int J Hydrogen Energy, 2023, 48: 24285–24294

    Article  CAS  Google Scholar 

  52. Huang Y, Jian Y, Li L, et al. A NIR-responsive phytic acid nickel biomimetic complex anchored on carbon nitride for highly efficient solar hydrogen production. Angew Chem Int Ed, 2021, 60: 5245–5249

    Article  CAS  Google Scholar 

  53. Ren S, Wang S, Chen H, et al. S vacancies engineering ZnIn2S4 nanosheets for boosted photocatalytic hydrogen evolution. Int J Hydrogen Energy, 2024, 51: 1128–1135

    Article  CAS  Google Scholar 

  54. Wang R, Yu W, Fang N, et al. Constructing fast charge separation of ZnIn2S4@CuCo2S4 p-n heterojunction for efficient photocatalytic hydrogen energy recovery from quinolone antibiotic wastewater. Appl Catal B-Environ, 2024, 341: 123284

    Article  CAS  Google Scholar 

  55. Ge W, Song J, Deng S, et al. Construction of Z-scheme CoFe2O4@ ZnIn2S4 p-n heterojunction for enhanced photocatalytic hydrogen production. Separation Purification Tech, 2024, 328: 125059

    Article  CAS  Google Scholar 

  56. Zhou X, Li J, Cai X, et al. In situ photo-derived MnOOH collaborating with Mn2Co2C@C dual co-catalysts boost photocatalytic overall water splitting. J Mater Chem A, 2020, 8: 17120–17127

    Article  CAS  Google Scholar 

  57. Wu Y, Yang Y, Gu M, et al. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chin J Catal, 2023, 53: 123–133

    Article  CAS  Google Scholar 

  58. Cai M, He C, Yu H, et al. Fabrication of the ternary dual S-scheme ZnO/ZnS/In2S3 heterojunction for enhancing pollutant photodegradation. Appl Surf Sci, 2024, 652: 159284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22225808), the Sino-German Cooperation Group Project (GZ1579), Jiangsu Province Innovation Support Program International Science and Technology Cooperation Project (BZ2022045), and the Special Scientific Research Project of School of Emergency Management, Jiangsu University (KY-A-02).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Huang Y, Yang H, and Shi W conceived the project and designed the experiments; Huang Y, Yang H, Feng S, Ma C, Cao P, Li F, and Lu X performed data analysis and characterization; Huang Y, Yang H, and Shi W contributed to the project discussions, wrote the manuscript, and corrected the article draft; Shi W supervised this research Huang Y and Yang H contributed equally to this paper All authors read and approved the manuscript.

Corresponding author

Correspondence to Weidong Shi  (施伟东).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yuanyong Huang is currently a PhD student under the tutelage of Professor Weidong Shi at Jiangsu University, Zhenjiang, China. He is mainly interested in the design and synthesis of NIR-responsive photocatalysts for solar energy conversion.

Hong Yang is currently a Master student under the tutelage of Professor Weidong Shi at Jiangsu University, Zhenjiang, China. At present, his research mainly focuses on the design and synthesis of ZnIn2S4-based nano-materials and their applications on NIR-driven H2 production.

Weidong Shi (College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology) received his PhD degree from Changchun Institute of Applied Chemical, National Key Laboratory of Rare Earth Resources Utilization, Chinese Academy of Sciences in 2007. He then conducted postdoctoral research at the University of Glasgow in UK and University of Cologne in Germany. His research interests currently focus on new materials and energy photocatalysis, electrocatalysis with emphasis on the design of new catalysts and control of morphology, microstructure and reaction mechanism for hydrogen production, and environmental pollutants degradation.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yang, H., Feng, S. et al. Facile defect engineering in ZnIn2S4 nanosheets for enhanced NIR-driven H2 evolution. Sci. China Mater. 67, 1812–1819 (2024). https://doi.org/10.1007/s40843-024-2844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2844-8

Keywords

Navigation