Skip to main content
Log in

Sea urchin-like CoTe-CoP heterostructure catalyst for efficient hydrogen evolution in all-pH range

海胆状CoTe-CoP异质结构催化剂在全pH范围内高效析氢

  • Articles
  • Special Topic: Advanced Energy Catalytic Materials
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of robust and pH-adaptable hydrogen evolution reaction (HER) catalysts is of great significance to achieve a mass-scale hydrogen production. The interface engineering is one of the most effective strategies due to its unique properties. Herein, the sea urchin-like heterostructure catalyst CoTe-CoP/NF is constructed successfully. The synergy of CoTe and CoP not only optimizes the electronic structure and exposes more active sites, but also effectively improves the hydrophilicity and aerophobicity of the catalyst. Meanwhile, density functional theory calculations further unveil that the interaction between CoTe and CoP efficiently reduces the dissociation energy barrier of water, and simultaneously enhances H* adsorption. All these results endow CoTe-CoP/NF excellent HER performance and catalytic stability at full pH range. The CoTe-CoP/NF electrode only needs 51, 53, and 75 mV overpotentials at 10 mA cm−2 for HER in acidic, alkaline, and neutral media, respectively. In short, this work provides an interface engineering strategy to construct high-performance HER catalysts in all-pH range.

摘要

研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大 规模制氢具有重要意义. 界面工程是研发高效HER催化剂的有效策略 之一. 本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF. CoTe和 CoP的协同作用不仅优化了电子结构、暴露了更多的活性位点, 而且 有效地提高了催化剂的亲水性和疏气性. 密度泛函理论计算表明: CoTe与CoP之间的相互作用有效地降低了水的解离能垒, 同时增强了 对H*的吸附. 这些结果使得CoTe-CoP/NF在整个pH范围内具有优异的 HER性能和催化稳定性. 在酸性、碱性和中性介质中, CoTe-CoP/NF电 极驱动10 mA cm−2的电流密度仅需51、53和75 mV的过电位. 总之, 本 工作为在全pH范围内构建高性能HER催化剂提供了一种界面工程新 策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suen NT, Hung SF, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem Soc Rev, 2017, 46: 337–365

    Article  CAS  PubMed  Google Scholar 

  2. Xiao Y, Yao C, Su C, et al. Nanoclusters for photoelectrochemical water splitting: Bridging the photosensitizer and carrier transporter. EcoEnergy, 2023, 1: 60–84

    Article  Google Scholar 

  3. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303

    Article  CAS  PubMed  Google Scholar 

  4. Luo M, Liu S, Zhu W, et al. An electrodeposited MoS2-MoO3x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem Eng J, 2022, 428: 131055

    Article  CAS  Google Scholar 

  5. Qiao K, Liu H, Huang S, et al. Designing self-humidifying proton exchange membrane fuel cells by using patterned acid-alkaline hybrid cathodes. Int J Hydrogen Energy, 2023, 50: 209–220

    Article  Google Scholar 

  6. Chen B, Wang Y, Shen S, et al. Lattice defects and electronic modulation of flower-like Zn3In2S6 promote photocatalytic degradation of multiple antibiotics. Small Methods, 2024, 2301598

  7. Hou L, Jang H, Gu X, et al. Design strategies of ruthenium-based materials toward alkaline hydrogen evolution reaction. EcoEnergy, 2023, 1: 16–44

    Article  Google Scholar 

  8. Liu H, Gao J, Xu X, et al. Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chem Eng J, 2022, 448: 137706

    Article  CAS  Google Scholar 

  9. Zhang J, Xu X, Yang L, et al. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods, 2019, 3: 1900653

    Article  CAS  Google Scholar 

  10. Yu Z, Duan Y, Feng X, et al. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv Mater, 2021, 33: 2007100

    Article  CAS  Google Scholar 

  11. Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy, 2019, 4: 512–518

    Article  CAS  Google Scholar 

  12. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal, 2018, 1: 985–992

    Article  CAS  Google Scholar 

  13. Anantharaj S, Noda S. Layered 2D PtX2 (X = S, Se, Te) for the electrocatalytic HER in comparison with Mo/WX2 and Pt/C: Are we missing the bigger picture? Energy Environ Sci, 2022, 15: 1461–1478

    Article  CAS  Google Scholar 

  14. Dubouis N, Grimaud A. The hydrogen evolution reaction: From material to interfacial descriptors. Chem Sci, 2019, 10: 9165–9181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue D, Cheng J, Yuan P, et al. Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv Funct Mater, 2022, 32: 2113191

    Article  CAS  Google Scholar 

  16. Niu Z, Lu Z, Qiao Z, et al. Robust Ru-VO2 bifunctional catalysts for all-pH overall water splitting. Adv Mater, 2024, 36: 2310690

    Article  CAS  Google Scholar 

  17. Xing M, Liu H, Dong X, et al. Co(OH)2 promoting the catalytic activity of CoP/Ni2P heterojunction for hydrogen evolution in both alkaline and acid media. Mater Today Energy, 2022, 30: 101142

    Article  CAS  Google Scholar 

  18. Shen S, Zhang H, Song K, et al. Multi-d electron synergy in LaNi1−xCoxRu intermetallics boosts electrocatalytic hydrogen evolution. Angew Chem Int Ed, 2024, 63: e202315340

    Article  CAS  Google Scholar 

  19. Fan X, Liu C, Wu M, et al. Synergistic effect of dual active sites over Ru/α-MoC for accelerating alkaline hydrogen evolution reaction. Appl Catal B-Environ, 2022, 318: 121867

    Article  CAS  Google Scholar 

  20. Ma T, Cao H, Li S, et al. Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv Mater, 2022, 34: 2206368

    Article  CAS  Google Scholar 

  21. Lyu C, Cheng J, Wang H, et al. Construction of interface-engineered coral-like nickel phosphide@cerium oxide hybrid nanoarrays to boost electrocatalytic hydrogen evolution performance in alkaline water/seawater electrolytes. Adv Compos Hybrid Mater, 2023, 6: 175

    Article  CAS  Google Scholar 

  22. Wu W, Huang Y, Wang X, et al. Composition-optimized manganese phosphide nanoparticles anchored on porous carbon network for efficiently electrocatalytic hydrogen evolution. Chem Eng J, 2023, 469: 143879

    Article  CAS  Google Scholar 

  23. Zhu J, Chi J, Cui T, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl Catal B-Environ, 2023, 328: 122487

    Article  CAS  Google Scholar 

  24. Ning M, Wang Y, Wu L, et al. Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett, 2023, 15: 157

    Article  CAS  Google Scholar 

  25. Zhai P, Wang C, Zhao Y, et al. Regulating electronic states of nitride/ hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat Commun, 2023, 14: 1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li G, Sun T, Niu HJ, et al. Triple interface optimization of Ru-based electrocatalyst with enhanced activity and stability for hydrogen evolution reaction. Adv Funct Mater, 2023, 33: 2212514

    Article  CAS  Google Scholar 

  27. Tan L, Yu J, Wang H, et al. Controllable synthesis and phase-dependent catalytic performance of dual-phase nickel selenides on Ni foam for overall water splitting. Appl Catal B-Environ, 2022, 303: 120915

    Article  CAS  Google Scholar 

  28. Song K, Zhang H, Lin Z, et al. Interfacial engineering of cobalt thiophosphate with strain effect and modulated electron structure for boosting electrocatalytic hydrogen evolution reaction. Adv Funct Mater, 2024, 34: 2312672

    Article  CAS  Google Scholar 

  29. Li Y, Dong Z, Jiao L. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv Energy Mater, 2020, 10: 1902104

    Article  CAS  Google Scholar 

  30. Hong W, Jian C, Wang G, et al. Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl Catal B-Environ, 2019, 251: 213–219

    Article  CAS  Google Scholar 

  31. Yu W, Gao Y, Chen Z, et al. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin J Catal, 2021, 42: 1876–1902

    Article  CAS  Google Scholar 

  32. Zhang R, Ren X, Hao S, et al. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A, 2018, 6: 1985–1990

    Article  CAS  Google Scholar 

  33. Xu K, Sun Y, Sun Y, et al. Yin-yang harmony: Metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett, 2018, 3: 2750–2756

    Article  CAS  Google Scholar 

  34. Wang Y, Li B, Xiao W, et al. Atomic doping modulates the electronic structure of porous cobalt phosphide nanosheets as efficient hydrogen generation electrocatalysts in wide pH range. Chem Eng J, 2023, 452: 139175

    Article  CAS  Google Scholar 

  35. Guan C, Xiao W, Wu H, et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48: 73–80

    Article  Google Scholar 

  36. Tan Q, Xiao R, Yao X, et al. Non-oxygen anion-regulated in situ cobalt based heterojunctions for active alkaline hydrogen evolution catalysis. Chem Eng J, 2022, 433: 133514

    Article  CAS  Google Scholar 

  37. Xu K, Cheng H, Lv H, et al. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv Mater, 2018, 30: 1703322

    Article  Google Scholar 

  38. Zhang L, Shi X, Xu A, et al. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res, 2024, 17: 3693–3699

    Article  CAS  Google Scholar 

  39. Ma J, Wang M, Lei G, et al. Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small, 2018, 14: 1702895

    Article  Google Scholar 

  40. Tabassum H, Guo W, Meng W, et al. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater, 2017, 7: 1601671

    Article  Google Scholar 

  41. Guo Y, Yuan P, Zhang J, et al. Co2P–CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv Funct Mater, 2018, 28: 1805641

    Article  Google Scholar 

  42. Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-watersplitting activity. Angew Chem Int Ed, 2016, 55: 6702–6707

    Article  CAS  Google Scholar 

  43. Wang Y, Han P, Lv X, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule, 2018, 2: 2551–2582

    Article  CAS  Google Scholar 

  44. Lin Y, Sun K, Liu S, et al. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv Energy Mater, 2019, 9: 1901213

    Article  Google Scholar 

  45. Tan Y, Feng J, Kang L, et al. Hybrid Ni2P/CoP nanosheets as efficient and robust electrocatalysts for domestic wastewater splitting. Energy & Environ Mater, 2023, 6: e12398

    Article  CAS  Google Scholar 

  46. Yang L, Liu R, Jiao L. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv Funct Mater, 2020, 30: 1909618

    Article  CAS  Google Scholar 

  47. Xing M, Zhu S, Zeng X, et al. Amorphous/crystalline Rh(OH)3/CoP heterostructure with hydrophilicity/aerophobicity feature for all-pH hydrogen evolution reactions. Adv Energy Mater, 2023, 13: 2302376

    Article  CAS  Google Scholar 

  48. Ding X, Yu J, Huang W, et al. Modulation of the interfacial charge density on Fe2P-CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem Eng J, 2023, 451: 138550

    Article  CAS  Google Scholar 

  49. Huang X, Xu X, Luan X, et al. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy, 2020, 68: 104332

    Article  CAS  Google Scholar 

  50. Xiong L, Wang B, Cai H, et al. Neighboring effect induced by V and Cr doping in FeCoP nanoarrays for the hydrogen evolution reaction with Pt-like performance. J Mater Chem A, 2020, 8: 1184–1192

    Article  CAS  Google Scholar 

  51. Inta HR, Ghosh S, Mondal A, et al. Ni0.85Se/MoSe2 interfacial structure: An efficient electrocatalyst for alkaline hydrogen evolution reaction. ACS Appl Energy Mater, 2021, 4: 2828–2837

    Article  CAS  Google Scholar 

  52. Zhang J, Zhang Z, Ji Y, et al. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl Catal B-Environ, 2021, 282: 119609

    Article  CAS  Google Scholar 

  53. Cai H, Xiong L, Wang B, et al. Boosting the hydrogen evolution reaction of N-C@CoP through an N atom induced p-d orbital coupling. Chem Eng J, 2022, 446: 137132

    Article  CAS  Google Scholar 

  54. Yang L, Xu H, Liu H, et al. Active site identification and evaluation criteria of in situ grown CoTe and NiTe nanoarrays for hydrogen evolution and oxygen evolution reactions. Small Methods, 2019, 3: 1900113

    Article  Google Scholar 

  55. De Silva U, Masud J, Zhang N, et al. Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J Mater Chem A, 2018, 6: 7608–7622

    Article  CAS  Google Scholar 

  56. Xue Z, Li X, Liu Q, et al. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv Mater, 2019, 31: 1900430

    Article  Google Scholar 

  57. Sun H, Yang JM, Li JG, et al. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Appl Catal B-Environ, 2020, 272: 118988

    Article  CAS  Google Scholar 

  58. Xing M, Qiao Z, Niu Z, et al. Strain engineering of the NiTe/Ni2P heterostructure to boost the oxygen evolution reaction. ACS Appl Mater Interfaces, 2023, 15: 40428–40437

    Article  CAS  PubMed  Google Scholar 

  59. Amorim I, Liu L. Transition metal tellurides as emerging catalysts for electrochemical water splitting. Curr Opin Electrochem, 2022, 34: 101031

    Article  CAS  Google Scholar 

  60. Ge Z, Fu B, Zhao J, et al. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J Mater Sci, 2020, 55: 14081–14104

    Article  CAS  Google Scholar 

  61. Khan QU, Ishaq MW, Begum N, et al. Nanoscale CuTe electrocatalyst immobilized at conductor surface for remarkable hydrogen evolution reaction. Int J Hydrogen Energy, 2021, 46: 18729–18739

    Article  CAS  Google Scholar 

  62. Wu Y, Wang Y, Wang Z, et al. Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production. J Mater Chem A, 2021, 9: 23574–23581

    Article  CAS  Google Scholar 

  63. Xie XQ, Liu J, Gu C, et al. Hierarchical structured CoP nanosheets/ carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting. J Energy Chem, 2022, 64: 503–510

    Article  CAS  Google Scholar 

  64. Yang F, Chen Y, Cheng G, et al. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal, 2017, 7: 3824–3831

    Article  CAS  Google Scholar 

  65. Sun H, Li L, Humayun M, et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh (OH)3/NiTe coaxial nanorod array electrode. Appl Catal B-Environ, 2022, 305: 121088

    Article  CAS  Google Scholar 

  66. Xu B, Yang X, Liu X, et al. Lattice distortion in hybrid NiTe2/Ni(OH)2 nanosheets as efficient synergistic electrocatalyst for water and urea oxidation. J Power Sources, 2020, 449: 227585

    Article  CAS  Google Scholar 

  67. Yu J, He Q, Yang G, et al. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal, 2019, 9: 9973–10011

    Article  CAS  Google Scholar 

  68. Zhou X, Tang X, Xu H, et al. Designing Ru-doped Zn3V3O8 bifunctional OER and HER catalysts through a unified computational and experimental approach. Nanoscale, 2021, 13: 17457–17464

    Article  CAS  PubMed  Google Scholar 

  69. Jiang R, Qiao Z, Xu H, et al. Novel 2D carbon material T-graphene supported 3d transition metal single atoms as efficient oxygen reduction catalysts. Nanoscale, 2023, 15: 16775–16783

    Article  CAS  PubMed  Google Scholar 

  70. Ding X, Jiang R, Wu J, et al. Ni3N–CeO2 heterostructure bifunctional catalysts for electrochemical water splitting. Adv Funct Mater, 2023, 33: 2306786

    Article  CAS  Google Scholar 

  71. Niu Z, Qiao Z, Wang S, et al. Lateral synergy of SbN4 and FeN4OH dual sites for boosting oxygen reduction in PEMFC and ultralow temperature Zn-air battery. Chem Eng J, 2023, 474: 146004

    Article  CAS  Google Scholar 

  72. Kitchin JR, Nørskov JK, Barteau MA, et al. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys, 2004, 120: 10240–10246

    Article  CAS  PubMed  Google Scholar 

  73. Hammer B, Nørskov JK. Theoretical surface science and catalysis—calculations and concepts. In: Gates BC, Knozinger H. (eds). Advances in Catalysis. Salt Lake City UT: Academic Press, 2000

    Google Scholar 

Download references

Acknowledgements

This work is supported by Outstanding Talent Fund from Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Cao D proposed the original idea and designed the experiment. Zhu S and Xing M performed the experiments. Lu Z and Qiao Z performed the DFT calculations. Wang S, Zhao Q, Shao M and Yun J discussed and analyzed the results. Zhu S, Xing M and Lu Z wrote the first draft. Cao D revised the original manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jimmy Yun  (甑崇礼) or Dapeng Cao  (曹达鹏).

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Dapeng Cao is a fellow of the Royal Society of Chemistry (FRSC), and a professor and director of the Division of Molecular and Materials Simulation at Beijing University of Chemical Technology (BUCT). He received his PhD degree from BUCT in 2002, and was a research scientist at NanoMaterials Technology Pte. Ltd. in Singapore (2002–2003), and a postdoctoral researcher at the University of California at Riverside (2003–2005). His research interests are focused on the designed synthesis and applications of energy/catalysis materials and porous materials.

Shaoke Zhu is a master student majoring in materials and chemical engineering at BUCT, supervised by Prof. Dapeng Cao. Her research focuses on the synthesis of catalytic materials for hydrogen evolution and oxygen evolution reactions.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Xing, M., Lu, Z. et al. Sea urchin-like CoTe-CoP heterostructure catalyst for efficient hydrogen evolution in all-pH range. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-024-2820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-024-2820-0

Keywords

Navigation