Skip to main content
Log in

A highly adsorptive electrochemical fiber sensor for real-time and accurate detection of intracranial nitric oxide

高吸附电化学纤维传感器用于实时、准确检测颅内 一氧化氮

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrochemical nitric oxide (NO) sensors are capable of real-time monitoring of intracranial NO concentration, which is crucial for understanding the functions of NO in the brain. However, traditional rigid electrochemical sensors used in the brain face the dilemma of low sensitivity and abnormal NO concentrations caused by neuroin-flammatory responses. Here, we report a highly sensitive and accurate electrochemical NO sensor that combines both physical and chemical adsorption capabilities for NO. The physical and chemical adsorption capabilities can be attributed to the high specific surface area and abundant carboxyl functional groups of the electrode, respectively. Besides, it is soft and matches the mechanical property of brain tissue, enabling an adaptable interface. The resulting NO sensor exhibits the highest reported sensitivity of 3245 pA nmol−1 L, with a low detection limit of 0.1 nmol L−1. No significant inflammatory response or excess NO expression is observed after implantation, improving the detection accuracy. The sensor successfully captures NO fluctuations in the brain and enables simultaneous NO detection in multiple brain regions, facilitating research on NO physio-pathological actions in the brain.

摘要

电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度, 对于 了解大脑中一氧化氮的功能至关重要. 然而, 在大脑中使用的传统刚性 传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的 问题. 在这里, 我们报道了一种结合物理和化学吸附能力、具有高灵敏 度和准确性的电化学一氧化氮传感器. 其对一氧化氮的物理和化学吸 附能力分别来自于电极的高比表面积和丰富的羧基官能团. 此外, 柔软 的电极可以与脑组织的力学性能相匹配, 实现了一个高度适应的电极/组织界面. 由此设计的颅内一氧化氮传感器表现出迄今为止所报道文 献中最高的灵敏度, 为3245 pA nmol−1L, 检测限为0.1 nmol L−1. 电极 在植入后未观察到显著的炎症反应以及过量的一氧化氮表达, 提高了 检测的准确性. 该传感器成功捕捉了大脑中的一氧化氮波动, 并实现了 对多个脑区的同时检测, 促进了对大脑中一氧化氮生理病理作用的 研究.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calabrese V, Mancuso C, Calvani M, et al. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat Rev Neurosci, 2007, 8: 766–775

    Article  CAS  PubMed  Google Scholar 

  2. Chachlaki K, Garthwaite J, Prevot V. The gentle art of saying NO: How nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol, 2017, 13: 521–535

    Article  CAS  PubMed  Google Scholar 

  3. Ignarro LJ. Nitric oxide: A unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew Chem Int Ed, 1999, 38: 1882–1892

    Article  CAS  Google Scholar 

  4. Zhuo M, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science, 1993, 260: 1946–1950

    Article  CAS  PubMed  Google Scholar 

  5. Bogdan C. Nitric oxide and the immune response. Nat Immunol, 2001, 2: 907–916

    Article  CAS  PubMed  Google Scholar 

  6. Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol, 2018, 15: 292–316

    Article  CAS  PubMed  Google Scholar 

  7. Kourosh-Arami M, Hosseini N, Mohsenzadegan M, et al. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neuroscis, 2020, 31: 617–636

    Article  CAS  Google Scholar 

  8. Gramaglia I, Sobolewski P, Meays D, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med, 2006, 12: 1417–1422

    Article  CAS  PubMed  Google Scholar 

  9. Tsikas D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatography B, 2007, 851: 51–70

    Article  CAS  Google Scholar 

  10. Qi J, Feng L, Zhang X, et al. Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nat Commun, 2021, 12: 960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kojima H, Urano Y, Kikuchi K, et al. Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed, 1999, 38: 3209–3212

    Article  CAS  Google Scholar 

  12. Gomes FO, Maia LB, Cordas C, et al. Nitric oxide detection using electrochemical third-generation biosensors-based on heme proteins and porphyrins. Electroanalysis, 2018, 30: 2485–2503

    Article  CAS  Google Scholar 

  13. Lu T, Weng T, Liaw W. X-ray emission spectroscopy: A spectroscopic measure for the determination of NO oxidation states in Fe-NO complexes. Angew Chem Int Ed, 2014, 53: 11562–11566

    Article  CAS  Google Scholar 

  14. Brown MD, Schoenfisch MH. Electrochemical nitric oxide sensors: Principles of design and characterization. Chem Rev, 2019, 119: 11551–11575

    Article  CAS  PubMed  Google Scholar 

  15. Privett BJ, Shin JH, Schoenfisch MH. Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev, 2010, 39: 1925–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu W, Jiang H, Qi Y, et al. Large-scale synthesis of functionalized nanowires to construct nanoelectrodes for intracellular sensing. Angew Chem Int Ed, 2021, 60: 19337–19343

    Article  CAS  Google Scholar 

  17. Moon J, Ha Y, Kim M, et al. Dual electrochemical microsensor for realtime simultaneous monitoring of nitric oxide and potassium ion changes in a rat brain during spontaneous neocortical epileptic seizure. Anal Chem, 2016, 88: 8942–8948

    Article  CAS  PubMed  Google Scholar 

  18. Meiller A, Sequeira E, Marinesco S. Electrochemical nitric oxide microsensors based on a fluorinated xerogel screening layer for in vivo brain monitoring. Anal Chem, 2020, 92: 1804–1810

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Paton JFR, Kasparov S. The challenge of real-time measurements of nitric oxide release in the brain. Auton Neurosci, 2006, 126–127: 59–67

    Article  PubMed  Google Scholar 

  20. Santos RM, Rodrigues MS, Laranjinha J, et al. Biomimetic sensor based on hemin carbon nanotubes chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron, 2013, 44: 152–159

    Article  CAS  PubMed  Google Scholar 

  21. Jo A, Do H, Jhon GJ, et al. Real-time evaluation of nitric oxide (NO) levels in cortical and hippocampal areas with a nanopore-based electrochemical NO sensor. Neurosci Lett, 2011, 498: 22–25

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Jung H, Lee C, et al. Biological application of RuO2 nanorods grown on a single carbon fiber for the real-time direct nitric oxide sensing. Sens Actuat B-Chem, 2014, 191: 298–304

    Article  CAS  Google Scholar 

  23. Ha Y, Sim J, Lee Y, et al. Insertable fast-response amperometric NO CO dual microsensor: Study of neurovascular coupling during acutely induced seizures of rat brain cortex. Anal Chem, 2016, 88: 2563–2569

    Article  CAS  PubMed  Google Scholar 

  24. Feiner R, Dvir T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat Rev Mater, 2017, 3: 1–6

    Article  Google Scholar 

  25. Clark JJ, Sandberg SG, Wanat MJ, et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods, 2009, 7: 126–129

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater, 2017, 2: 16093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Wang L, Feng J, et al. Long-term in vivo monitoring of chemicals with fiber sensors. Adv Fiber Mater, 2021, 3: 47–58

    Article  CAS  Google Scholar 

  28. Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol, 2017, 18: 132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hrapovic S, Liu Y, Male KB, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem, 2004, 76: 1083–1088

    Article  CAS  PubMed  Google Scholar 

  30. Vokoun D, He Q, Heller L, et al. Modeling of IPMC cantilever’s displacements and blocking forces. J Bionic Eng, 2015, 12: 142–151

    Article  Google Scholar 

  31. Wang L, Xie S, Wang Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng, 2020, 4: 159–171

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Wang L, Zhang Y, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater, 2018, 28: 1804456

    Article  Google Scholar 

  33. Chen T, Wang S, Yang Z, et al. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew Chem Int Ed, 2011, 50: 1815–1819

    Article  CAS  Google Scholar 

  34. Hong Z, Wang Z, Li X. Catalytic oxidation of nitric oxide (NO) over different catalysts: An overview. Catal Sci Technol, 2017, 7: 3440–3452

    Article  CAS  Google Scholar 

  35. He S, Zhang Y, Qiu L, et al. Chemical-to-electricity carbon: Water device. Adv Mater, 2018, 30: e1707635

    Article  PubMed  Google Scholar 

  36. Sezer N, Koç M. Oxidative acid treatment of carbon nanotubes. Surfs Interfaces, 2019, 14: 1–8

    Article  CAS  Google Scholar 

  37. Su Y, Fan B, Wang L, et al. MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3. Catal Today, 2013, 201: 115–121

    Article  CAS  Google Scholar 

  38. Wang D, He N, Xiao L, et al. Coupling electrocatalytic nitric oxide oxidation over carbon cloth with hydrogen evolution reaction for nitrate synthesis. Angew Chem Int Ed, 2021, 60: 24605–24611

    Article  CAS  Google Scholar 

  39. Chigo-Anota E, Escobedo-Morales A, Hernández-Cocoletzi H, et al. Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural stability, physicochemistry and drug delivery perspectives. Physica E-Low-dimensional Syst NanoStruct, 2015, 74: 538–543

    Article  CAS  Google Scholar 

  40. Kitamura H, Sekido M, Takeuchi H, et al. The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid. Carbon, 2011, 49: 3851–3856

    Article  CAS  Google Scholar 

  41. Chen P, Xu Y, He S, et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotech, 2015, 10: 1077–1083

    Article  CAS  Google Scholar 

  42. Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 2014, 53: 14564–14568

    Article  CAS  Google Scholar 

  43. Li R, Qi H, Ma Y, et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun, 2020, 11: 3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang Q, Xia X, Sun X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals. Adv Sci, 2022, 9: e2201059

    Article  Google Scholar 

  45. Chen Z, Mou R, Feng D, et al. The role of nitric oxide in stroke. Med Gas Res, 2017, 7: 194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balkaya M, Kröber JM, Rex A, et al. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab, 2013, 33: 330–338

    Article  CAS  PubMed  Google Scholar 

  47. Manwani B, Liu F, Xu Y, et al. Functional recovery in aging mice after experimental stroke. Brain Behav Immun, 2011, 25: 1689–1700

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yanamoto H, Nagata I, Niitsu Y, et al. Evaluation of MCAO stroke models in normotensive rats: Standardized neocortical infarction by the 3VO technique. Exp Neurol, 2003, 182: 261–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22175086, 22005137, 22205098, and 82201992), the Natural Science Foundation of Jiangsu Province (BK20200321 and BK20210681), the Postdoctoral Research Foundation of Jiangsu Province (2021K007A), China Postdoctoral Science Foundation (2021M700067), the National Postdoctoral Program for Innovative Talents (BX20200161), the Program for Innovative Talents and Entrepreneurs in Jiangsu (JSSCTD202138), the Fundamental Research Funds for the Central Universities (021314380234), and the Natural Science Foundation of Nanjing University of Chinese Medicine (XPT82201992).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang Y conceived the general idea. Gao R designed and conducted the experiments, wrote the paper with support from Wang L. Li D conducted the biological experiments. Song J, Li Q and Lu J assisted in the electrochemical tests. Li L, Li Y and Li F carried out the SEM tests. Ye T, Wang J, Jiao Y, He E and Ren J helped analyze the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ye Zhang  (张晔).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Rui Gao received her BS degree in materials physics from Nanjing University in 2021. Currently, she is pursuing her MS degree in materials science and engineering at Nanjing University. Her current research interest focuses on implantable sensors.

Lie Wang received his BS degree from Zhejiang Sci-Tech University in 2015 and PhD degree in polymer chemistry from Fudan University in 2020. Afterwards, he worked as a postdoctoral fellow for three years at Nanjing University. His current research focuses on wearable sensors and implantable bioelectronic devices.

Dan Li received her PhD degree in polymer chemistry from the Medical School, Nanjing University in 2020. Now, she is an associate professor at the School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine. Her research interest focuses on the analyses of the pathogenesis of immune diseases based on the diversity of MDSCs cell phenotypes, monitoring and evaluation of drug treatment of immune diseases based on flexible fibers.

Ye Zhang is currently an associate professor at the College of Engineering and Applied Sciences, Nanjing University. She received her PhD degree in macromolecular chemistry and physics from Fudan University in 2018 and then joined Harvard Medical School as a postdoctoral research fellow. Her research focuses on the development of soft electronics including batteries, sensors, and bioelectronic devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Wang, L., Li, D. et al. A highly adsorptive electrochemical fiber sensor for real-time and accurate detection of intracranial nitric oxide. Sci. China Mater. 67, 1320–1331 (2024). https://doi.org/10.1007/s40843-024-2808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-024-2808-2

Keywords

Navigation