Skip to main content
Log in

State-of-the-art, challenges, and prospects in mesoscopic structural assembly and engineering technologies within biomaterials

生物材料介观结构组装及工程化的最新进展、挑战和前景

  • Perspectives
  • Special Topic: Biomaterials and Bioinspired Materials
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

尽管天然生物组织的组分性能有限, 但其跨越多尺度的复杂有 序结构赋予了其出色的功能, 这一点在介观尺度尤为显著. 介观结构在 调控材料的物理性质和生物活性方面发挥着至关重要的作用. 本文深 入探讨了对组织再生修复材料进行介观结构控制的挑战, 并提出了一 种新型的场调控动态自组装技术. 该技术以电化学沉积技术为基础, 通 过调控电化学参数或与其他物理场进行耦合, 能够更精准地控制生物 大分子组装体的介观结构, 从而实现材料的高性能化. 此外, 本文还讨 论了该技术在工程化应用上的优势. 最后强调了跨学科和跨部门合作 的重要性, 这对于推动生物材料制造技术的产业化和商业化至关重要. 总之, 该技术在组织再生领域展现出了广阔的发展前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Spicer CD. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym Chem, 2020, 11: 184–219

    Article  CAS  Google Scholar 

  2. Bell JS, Hayes S, Whitford C, et al. The hierarchical response of human corneal collagen to load. Acta Biomater, 2018, 65: 216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boote C, Sigal IA, Grytz R, et al. Scleral structure and biomechanics. Prog Retinal Eye Res, 2020, 74: 100773

    Article  CAS  Google Scholar 

  4. Younesi M, Islam A, Kishore V, et al. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication, 2015, 7: 035001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Birch HL. Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Path, 2007, 88: 241–248

    Article  Google Scholar 

  6. Sun Q, Wei Q, Zhao C. How do the cells sense and respond to the microenvironment mechanics? Chin Sci Bull, 2021, 66: 2303–2311

    Article  Google Scholar 

  7. Sun Q, Pei F, Zhang M, et al. Curved nanofiber network induces cellular bridge formation to promote stem cell mechanotransduction. Adv Sci, 2023, 10: 2204479

    Article  CAS  Google Scholar 

  8. Luo J, Walker M, Xiao Y, et al. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix—A review. Bioactive Mater, 2022, 15: 145–159

    Article  CAS  Google Scholar 

  9. Lee MS, Lee DH, Jeon J, et al. Topographically defined, biodegradable nanopatterned patches to regulate cell fate and acceleration of bone regeneration. ACS Appl Mater Interfaces, 2018, 10: 38780–38790

    Article  CAS  PubMed  Google Scholar 

  10. Liu W, Sun Q, Zheng ZL, et al. Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small, 2022, 18: 2104328

    Article  CAS  Google Scholar 

  11. Wen X, Tresco PA. Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. J Biomed Mater Res, 2006, 76A: 626–637

    Article  CAS  Google Scholar 

  12. Lee JU, Kim GH. Three-dimensional hierarchical nanofibrous collagen scaffold fabricated using fibrillated collagen and pluronic F-127 for regenerating bone tissue. ACS Appl Mater Interfaces, 2018, 10: 35801–35811

    Article  CAS  PubMed  Google Scholar 

  13. Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226: 119536

    Article  CAS  PubMed  Google Scholar 

  14. Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: Control of size and shape for diagnostic imaging and drug delivery. WIREs Nanomed Nanobiotechnol, 2009, 1: 391–404

    Article  CAS  Google Scholar 

  15. Blanazs A, Madsen J, Battaglia G, et al. Mechanistic insights for block copolymer morphologies: How do worms form vesicles? J Am Chem Soc, 2011, 133: 16581–16587

    Article  CAS  PubMed  Google Scholar 

  16. Tu RS, Tirrell M. Bottom-up design of biomimetic assemblies. Adv Drug Deliver Rev, 2004, 56: 1537–1563

    Article  CAS  Google Scholar 

  17. Revell CK, Jensen OE, Shearer T, et al. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus, 2021, 12: 100079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ariga K, Li J, Fei J, et al. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater, 2016, 28: 1251–1286

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Wang X, Zhou C, et al. Some thoughts about controllable assembly (II): Catassembly in living organism. Sci Sin-Chim, 2020, 50: 1781–1800

    Article  Google Scholar 

  20. Liljeström V, Chen C, Dommersnes P, et al. Active structuring of colloids through field-driven self-assembly. Curr Opin Colloid Interface Sci, 2019, 40: 25–41

    Article  Google Scholar 

  21. Petroff AP, Wu XL, Libchaber A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys Rev Lett, 2015, 114: 158102

    Article  PubMed  Google Scholar 

  22. Saeidi N, Karmelek KP, Paten JA, et al. Molecular crowding of collagen: A pathway to produce highly-organized collagenous structures. Biomaterials, 2012, 33: 7366–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taghian T, Narmoneva DA, Kogan AB. Modulation of cell function by electric field: A high-resolution analysis. J R Soc Interface, 2015, 12: 20150153

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang ZB, Gao HL, Wen SM, et al. Scalable manufacturing of mechanical robust bioinspired ceramic-resin composites with locally tunable heterogeneous structures. Adv Mater, 2023, 35: 2209510

    Article  CAS  Google Scholar 

  25. Le Ferrand H, Bouville F, Niebel TP, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat Mater, 2015, 14: 1172–1179

    Article  CAS  PubMed  Google Scholar 

  26. Tong J, Yang C, Qi L, et al. Tubular chitosan hydrogels with a tuneable lamellar structure programmed by electrical signals. Chem Commun, 2022, 58: 5781–5784

    Article  CAS  Google Scholar 

  27. Lei M, Qu X, Liu H, et al. Programmable electrofabrication of porous Janus films with tunable Janus balance for anisotropic cell guidance and tissue regeneration. Adv Funct Mater, 2019, 29: 1900065

    Article  Google Scholar 

  28. Lei M, Zhang S, Zhou H, et al. Electrical signal initiates kinetic assembly of collagen to construct optically transparent and geometry customized artificial cornea substitutes. ACS Nano, 2022, 16: 10632–10646

    Article  CAS  PubMed  Google Scholar 

  29. Lei M, Qu X, Wan H, et al. Electro-assembly of a dynamically adaptive molten fibril state for collagen. Sci Adv, 2022, 8: eabl7506

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lei M, Liao H, Wang S, et al. Single step assembly of Janus porous biomaterial by sub-ambient temperature electrodeposition. Small, 2022, 18: e2204837

    Article  PubMed  Google Scholar 

  31. Lei M, Wan H, Song J, et al. Programmable electro-assembly of collagen: Constructing porous Janus films with customized dual signals for immunomodulation and tissue regeneration in periodontitis treatment. Adv Sci, 2024, 11: 2305756

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2021YFB3800800), the National Natural Science Foundation of China (31922041, 32171341, and 32301113), the 111 Project (B14018), the Science and Technology Innovation Project and Excellent Academic Leader Project of Shanghai Science and Technology Committee (21S31901500 and 21XD1421100), the National Postdoctoral Program for Innovative Talents (BX20230122), and Shanghai Sailing Program (23YF1409700), Shanghai Postdoctoral Excellence Program (2022157), and China Postdoctoral Science Foundation (2022M721136).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jiao Y and Qu X conceptualized and designed the perspective; Jiao Y drafted the manuscript; Lei M collected the related information; Chang R and Jiao Y organized the figures; Jiao Y and Qu X checked and revised the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Xue Qu  (屈雪).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yunke Jiao is a PhD candidate at the School of Materials Science and Engineering, East China University of Science and Technology. Her research interests focus on electrochemical deposition technology.

Xue Qu is a professor at the School of Materials Science and Engineering, East China University of Science and Technology. She graduated from the Institute of Chemistry, Chinese Academy of Sciences with her PhD degree; she was a Japan Society for the Promotion of Science (JSPS) postdoctoral researcher at Waseda University, Japan from 2007–2009. She has long been engaged in the research of novel biomaterials design, advanced manufacturing, and applications of natural biomolecules (proteins, glycans, polyphenols, etc.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Lei, M., Chang, R. et al. State-of-the-art, challenges, and prospects in mesoscopic structural assembly and engineering technologies within biomaterials. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-023-2809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-023-2809-x

Navigation