Skip to main content
Log in

Construction of BiVO4/CoPc S-scheme heterojunctions with enhanced photothermal-assisted photocatalytic activity

BiVO4/CoPc S型异质结的构建及其光热增强光催化性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photothermal-assisted photocatalytic degradation of antibiotics is a promising way to alleviate pollutant issues in the environment. Herein, a BiVO4 (BVO)-cobalt phthalocyanine (CoPc) S-scheme heterojunction was constructed by coupling the solvothermal method with sonication, which can facilitate photothermal-assisted photocatalytic tetracycline (TC) removal. The BVO-1% CoPc sample exhibited optimal TC removal efficiency, reaching 76% within 10 min; its apparent rate constant was 1.8 times that of pure BVO. Additionally, BVO-1% CoPc exhibited excellent reusability and stability in cycling experiments. Photoluminescence measurements demonstrated that the S-scheme heterojunction structure improved the charge separation efficiency. Infrared thermography images showed that the increased temperatures of the reaction system can be attributed to the photothermal effect of CoPc. The degradation intermediates and possible degradation pathways of TC were analyzed. Based on active species trapping experiments, in situ X-ray photoelectron spectrometry, and band structures, a possible S-scheme photocatalytic charge transfer mechanism for BVO-CoPc was reasonably proposed. This study provides a feasible strategy to construct an S-scheme heterojunction system with photothermal assistance for the practical removal of organic pollutants.

摘要

光热催化降解去除污染物对解决环境问题具有独特的优势. 本 文通过水热法结合超声处理的方法合成了BiVO4/CoPc S型异质结光热 催化材料. 实验结果表明, BVO-1% CoPc在10分钟内对四环素对降解率 可达76%, 相比钒酸铋单质提高了1.8倍. 进一步的红外热成像仪表明酞 菁钴(CoPc)的光热效应可以提高反应体系的温度. 同时, 研究人员还发 现降解后的中间产物毒性显著降低. 光致发光光谱的结果表明, 合成的 复合材料可以增强光生载流子的分离能力. 基于捕获实验、能带结构 和原位XPS等研究结果, 我们提出了光生电荷在合成的催化剂中的S型 传输机制. 本工作为设计和开发用于去除有机污染物的S型光热催化材 料提供了一种可行的策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abdurahman MH, Abdullah AZ, Shoparwe NF. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem Eng J, 2021, 413: 127412

    Article  CAS  Google Scholar 

  2. Liu K, Tong Z, Muhammad Y, et al. Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin. Chem Eng J, 2020, 388: 124374

    Article  CAS  Google Scholar 

  3. Shen H, Zhan X, Hong S, et al. Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res, 2023, 16: 10713–10723

    Article  ADS  CAS  Google Scholar 

  4. Yang R, Zhu Z, Hu C, et al. One-step preparation (3D/2D/2D) BWO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J, 2020, 390: 124522

    Article  CAS  Google Scholar 

  5. Shen Q, Wei L, Bibi R, et al. Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies. J Hazard Mater, 2021, 413: 125376

    Article  CAS  PubMed  Google Scholar 

  6. Chen R, Zhang H, Dong Y, et al. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: Intermediate, toxicity assessment and mechanism. J Mater Sci Tech, 2024, 170: 11–24

    Article  Google Scholar 

  7. Zhang H, Chen R, Zhou X, et al. Simultaneous removal of Cr(VI) and TC over BiO1–X Br/CeVO4 S-scheme heterostructures: Oxygen vacancy boosted charge separation and analysis of intermediates. Environ Sci-Nano, 2022, 9: 3613–3628

    Article  CAS  Google Scholar 

  8. Zhang Y, Sun A, Xiong M, et al. TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants. Chem Eng J, 2021, 415: 129019

    Article  CAS  Google Scholar 

  9. Ge X, Meng G, Liu B. Visible light-Fenton degradation of tetracycline hydrochloride over oxygen-vacancy-rich LaFeO3/polystyrene: Mechanism and degradation pathways. J Mol Liquids, 2022, 364: 120078

    Article  CAS  Google Scholar 

  10. Dou X, Chen Y, Shi H. CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem Eng J, 2022, 431: 134054

    Article  CAS  Google Scholar 

  11. Nguyen TD, Nguyen VH, Nanda S, et al. BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environ Chem Lett, 2020, 18: 1779–1801

    Article  CAS  Google Scholar 

  12. Li Y, Xiao X, Ye Z. Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance. Appl Surf Sci, 2019, 467–468: 902–911

    Article  ADS  Google Scholar 

  13. Lei Z, Cao X, Fan J, et al. Efficient photocatalytic H2 generation over In2.77 S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge. Chem Eng J, 2023, 457: 141249

    Article  ADS  CAS  Google Scholar 

  14. Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun, 2020, 11: 4613

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao Y, Ji Z, Zou C, et al. Construction of CeO2/BiOI S-scheme het-erojunction for photocatalytic removal of elemental mercury. Appl Surf Sci, 2021, 556: 149767

    Article  CAS  Google Scholar 

  16. Shi W, Sun W, Liu Y, et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation. Renew Energy, 2022, 182: 958–968

    Article  CAS  Google Scholar 

  17. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  18. Xu Z, Qin C, Zhong J, et al. In-situ preparation of S-scheme BiOI/BiVO4 heterojunctions with enhanced photocatalytic performance. Solid State Sci, 2022, 129: 106908

    Article  CAS  Google Scholar 

  19. Wang Y, Liu M, Wu C, et al. Hollow nanoboxes Cu2–xS@ZnIn2S4 core-shell S-scheme heterojunction with broad-spectrum response and enhanced photothermal-photocatalytic performance. Small, 2022, 18: 2202544

    Article  CAS  Google Scholar 

  20. Han X, Lu B, Huang X, et al. Novel p- and n-type S-scheme hetero-junction photocatalyst for boosted CO2 photoreduction activity. Appl Catal B-Environ, 2022, 316: 121587

    Article  CAS  Google Scholar 

  21. Jiang S, Cao J, Guo M, et al. Novel S-scheme WO3/RP composite with outstanding overall water splitting activity for H2 and O2 evolution under visible light. Appl Surf Sci, 2021, 558: 149882

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang Y, Jia X, et al. In situ fabrication of a novel S-scheme heterojunction photocatalyts Bi2O3/P-C3N4 to enhance levofloxacin removal from water. Separation Purification Tech, 2021, 268: 118691

    Article  CAS  Google Scholar 

  23. Cao S, Yu J, Wageh S, et al. H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst. J Mater Chem A, 2022, 10: 17174–17184

    Article  CAS  Google Scholar 

  24. Shi Y, Li L, Xu Z, et al. Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photo-catalytic H2 production. Chem Eng J, 2023, 459: 141549

    Article  CAS  Google Scholar 

  25. He X, Wu J, Li K, et al. Z-scheme 2D/2D heterojunction of ZnIn2S4/Ti-BPDC enhancing photocatalytic hydrogen evolution under visible light irradiation. Sci China Mater, 2023, 66: 3155–3164

    Article  CAS  Google Scholar 

  26. Landge VK, Sonawane SH, Sivakumar M, et al. S-scheme heterojunction Bi2O3-ZnO/bentonite clay composite with enhanced photocatalytic performance. Sustain Energy Technologies Assessments, 2021, 45: 101194

    Article  Google Scholar 

  27. Wang C, You C, Rong K, et al. An S-scheme MIL-101(Fe)-on-BiOCl Heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Physico Chim Sin, 2023, 0: 2307045

    Article  Google Scholar 

  28. Li S, Cai M, Liu Y, et al. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin J Catal, 2022, 43: 2652–2664

    Article  CAS  Google Scholar 

  29. Cai M, Liu Y, Dong K, et al. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin J Catal, 2023, 52: 239–251

    Article  CAS  Google Scholar 

  30. Li S, Wang C, Dong K, et al. MIL-101(Fe)/BiOBr S-scheme photo-catalyst for promoting photocatalytic abatement of Cr(VI) and enro-floxacin antibiotic: Performance and mechanism. Chin J Catal, 2023, 51: 101–112

    Article  CAS  Google Scholar 

  31. Shi W, Liu C, Li M, et al. Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-scheme dual pathways for enhanced visible-light photocatalytic activity. J Hazard Mater, 2020, 389: 121907

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y, Li L, Xu Z, et al. Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Mater Res Bull, 2022, 150: 111789

    Article  CAS  Google Scholar 

  33. Yuan Y, Pan W, Guo R, et al. Flower spherical-like Bi7O9I3/AgI S-scheme heterojunction for phenol photodegradation: The synergetic effect of dual surface plasmon resonance and photothermal property. Separation Purification Tech, 2022, 297: 121538

    Article  CAS  Google Scholar 

  34. Wang R, Shan G, Wang T, et al. Photothermal enhanced photocatalytic activity based on Ag-doped CuS nanocomposites. J Alloys Compd, 2021, 864: 158591

    Article  CAS  Google Scholar 

  35. Zhang N, He W, Cheng Z, et al. Construction of α-MnO2/g-C3N4 Z-scheme heterojunction for photothermal synergistic catalytic decomposition of formaldehyde. Chem Eng J, 2023, 466: 143160

    Article  CAS  Google Scholar 

  36. Zhang S, Zhang G, Wu S, et al. Fabrication of Co3O4@ZnIn2S4 for photocatalytic hydrogen evolution: Insights into the synergistic mechanism of photothermal effect and heterojunction. J Colloid Interface Sci, 2022, 650: 1974–1982

    Article  Google Scholar 

  37. Han X, Wang Z, Shen M, et al. A highly efficient organic solar energy-absorbing material based on phthalocyanine derivative for integrated water evaporation and thermoelectric power generation application. J Mater Chem A, 2021, 9: 24452–24459

    Article  CAS  Google Scholar 

  38. Khan I, Khan S, Wu S, et al. Synergistic functionality of dopants and defects in Co-phthalocyanine/B-CN Z-scheme photocatalysts for promoting photocatalytic CO2 reduction reactions. Small, 2023, 19: 2208179

    Article  CAS  Google Scholar 

  39. Chu X, Liu H, Yu H, et al. Improved visible-light activities of ultrathin CoPc/g-C3N4 heterojunctions by N-doped graphene modulation for selective benzyl alcohol oxidation. Mater Today Energy, 2022, 25: 100963–100970

    Article  CAS  Google Scholar 

  40. Li W, Li X, Fu X, et al. Photo-induced conversion of type-II CoPc/BiOBr-NSs to S-scheme heterostructure for boosting CO2 photo-reduction. Chem Eng J, 2023, 451: 138932

    Article  CAS  Google Scholar 

  41. Li H, Sun Y, Cai B, et al. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelec-trochemical and photocatalytic performance. Appl Catal B-Environ, 2015, 170–171: 206–214

    Article  Google Scholar 

  42. Luo XL, Yang SY, Wang ZL, et al. Synthesis of Z-scheme Bi2S3/RGO/BiVO4 photocatalysts with superior visible light photocatalytic effectiveness for pollutant degradation. Separation Purification Tech, 2023, 318: 123966

    Article  CAS  Google Scholar 

  43. Szybowicz M, Bała W, Fabisiak K, et al. Micro-Raman spectroscopic investigations of cobalt phthalocyanine thin films deposited on quartz and diamond substrates. Cryst Res Technol, 2010, 45: 1265–1271

    Article  CAS  Google Scholar 

  44. Ghorai UK, Paul S, Ghorai B, et al. Scalable production of cobalt phthalocyanine nanotubes: Efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature. ACS Nano, 2021, 15: 5230–5239

    Article  CAS  PubMed  Google Scholar 

  45. Do KH, Praveen Kumar D, Putta Rangappa A, et al. In situ preparation of polymeric cobalt phthalocyanine-decorated TiO2 nanorods for efficient photocatalytic CO2 reduction. Mater Today Chem, 2021, 22: 100589

    Article  CAS  Google Scholar 

  46. Prajapati PK, Kumar A, Jain SL. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions. ACS Sustain Chem Eng, 2018, 6: 7799–7809

    Article  CAS  Google Scholar 

  47. Baral B, Paramanik L, Parida K. Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@ (040/110)-BiVO4 ternary hybrid. J Colloid Interface Sci, 2021, 585: 519–537

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Wang Y, Tan G, Liu T, et al. Photocatalytic properties of the g-C3NN4/{010} facets BiVO4 interface Z-scheme photocatalysts induced by BiVO4 surface heterojunction. Appl Catal B-Environ, 2018, 234: 37–49

    Article  CAS  Google Scholar 

  49. Lu M, Li Q, Zhang C, et al. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon, 2020, 160: 342–352

    Article  CAS  Google Scholar 

  50. Bian J, Feng J, Zhang Z, et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Angew Chem Int Ed, 2019, 58: 10873–10878

    Article  CAS  Google Scholar 

  51. Zhang L, Feng W, Wang B, et al. Construction of dual-channel for optimizing Z-scheme photocatalytic system. Appl Catal B Environ, 2017, 212: 2990

    Article  Google Scholar 

  52. Chen X, Zhou J, Chen Y, et al. Degradation of tetracycline hydro-chloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst. Process Saf Environ Protection, 2021, 145: 364–377

    Article  CAS  Google Scholar 

  53. Li G, Lian Z, Wan Z, et al. Efficient photothermal-assisted photo-catalytic NO removal on molecular cobalt phthalocyanine/Bi2WO6 Z-scheme heterojunctions by promoting charge transfer and oxygen activation. Appl Catal B-Environ, 2022, 317: 121787

    Article  CAS  Google Scholar 

  54. Shen X, Zhang Y, Shi Z, et al. Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading flowing wastewater. J Alloys Compd, 2021, 851: 156743

    Article  CAS  Google Scholar 

  55. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  56. Yi H, Yan M, Huang D, et al. Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Appl Catal B-Environ, 2019, 250: 52–62

    Article  CAS  Google Scholar 

  57. Wang D, Li J, Xu Z, et al. Synthesis of g-C3N4/NiO p-n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr6+. J Mater Sci, 2019, 54: 11417–11434

    Article  ADS  CAS  Google Scholar 

  58. Shi Z, Chen Z, Zhang Y, et al. COF TzDa/Ag/AgBr Z-scheme heterojunction photocatalyst for efficient visible light driven elimination of antibiotics tetracycline and heavy metal ion Cr(VI). Separation Purification Tech, 2022, 288: 120717

    Article  CAS  Google Scholar 

  59. Zhu Z, Zhu C, Hu C, et al. Facile fabrication of BiOIO3/MIL-88B heterostructured photocatalysts for removal of pollutants under visible light irradiation. J Colloid Interface Sci, 2022, 607: 595–606

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Han T, Shi H, Chen Y. Facet-dependent CuO/{010}BiVO4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal. J Mater Sci Tech, 2024, 174: 30–43

    Article  Google Scholar 

  61. Jiang R, Mao L, Zhao Y, et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci China Mater, 2023, 66: 139–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22172064) and the National Laboratory of Solid State Microstructures, Nanjing University (M34047). Prof. Haifeng Shi is indebted to the financial support from the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Long Z and Shi H designed the experiments; Long Z and Zheng X performed the experiments and characterizations; Long Z and Shi H wrote the paper; Shi H supervised the study. All authors contributed to the general discussion.

Corresponding author

Correspondence to Haifeng Shi  (史海峰).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Ziyang Long is a graduate student at the School of Science, Jiangnan University. His research interest focuses on nanoscale materials and photocatalysis.

Haifeng Shi received his PhD degree in 2009 from Nanjing University. Currently, he is working as a full professor at Jiangnan University. His research mainly focuses on developing photocatalysts for H2 generation, CO2 conversion and decomposing organic pollutants.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Z., Zheng, X. & Shi, H. Construction of BiVO4/CoPc S-scheme heterojunctions with enhanced photothermal-assisted photocatalytic activity. Sci. China Mater. 67, 550–561 (2024). https://doi.org/10.1007/s40843-023-2773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2773-9

Keywords

Navigation