Skip to main content
Log in

Ethyl-activated carbon nitride for efficient photocatalytic CO2 conversion

乙基修饰的氮化碳增强光催化CO2转化

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Surface functional groups of photocatalysts play a key role in the transfer of photogenerated carriers and the active site of the reaction, which severely influence the photocatalytic conversion process. Therefore, reasonable and accurate regulation of surface groups can greatly optimize photocatalytic performance. Herein, we performed optimization on the unpolymerized NH2 group of carbon nitride (g-C3N4) by introducing an ethyl group with a strong electron-donating ability to obtain the E-CN photocatalysts. X-ray photoelectron spectroscopy confirmed the successful embedding of the ethyl group. Time-resolved spectroscopy and density function theory calculations verified that the photogenerated carrier changes in a favorable direction. Finally, the Gibbs free energy showed that E-CN significantly decreases the energy barrier of CO2 conversion to *COOH. The results revealed that the conversion rate of CO2 to CO is 47.08 µmol g−1 h−1. This work offers a reliable reference to improve the performance of photocatalysts by optimizing their surface functional groups.

摘要

光催化剂的表面官能团对光生载体的转移和反应的活性位点起着关键作用, 对光催化转化过程影响很大. 因此, 合理准确地调控表面基团可以极大地优化光催化性能. 本文通过引入给电子能力强的乙基, 对氮化碳(g-C3N4)未聚合的NH2基团进行优化. 通过X射线光电子能谱证实了乙基包埋的成功. 时间分辨光谱和密度泛函理论(DFT)计算证实了光生载流子沿有利方向变化. 最后, Gibbs自由能表明, 乙基改性的氮化碳具有显著降低的CO2转化为*COOH的能垒. 其CO2到CO的转化率为47.08 µmol g−1 h−1. 本研究为通过优化表面官能团来提高光催化剂性能的研究提供了可靠参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhao Z, Wang Z, Zhang J, et al. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv Funct Mater, 2023, 33: 2214470

    Article  CAS  Google Scholar 

  2. Ou H, Ning S, Zhu P, et al. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem Int Ed, 2022, 61: e202206579

    Article  CAS  Google Scholar 

  3. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  4. Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun, 2020, 11: 4613

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen R, Qin C, Hao L, et al. Realizing photocatalytic overall water splitting by modulating the thickness-induced reaction energy barrier of fluorenone-based covalent organic frameworks. Adv Mater, 2023, 35: 2305397

    Article  CAS  Google Scholar 

  6. Huang K, Bai J, Shen R, et al. Boosting photocatalytic hydrogen evolution through local charge polarization in chemically bonded single-molecule junctions between ketone molecules and covalent organic frameworks. Adv Funct Mater, 2023, 33: 2307300

    Article  CAS  Google Scholar 

  7. Yang H, Dai K, Zhang J, et al. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chin J Catal, 2022, 43: 2111–2140

    Article  CAS  Google Scholar 

  8. Liu L, Wang Z, Zhang J, et al. Tunable interfacial charge transfer in a 2D-2D composite for efficient visible-light-driven CO2 conversion. Adv Mater, 2023, 35: 2300643

    Article  CAS  Google Scholar 

  9. Shen R, Liang G, Hao L, et al. In situ synthesis of chemically bonded 2D/2D covalent organic frameworks/O-vacancy WO3 Z-scheme heterostructure for photocatalytic overall water splitting. Adv Mater, 2023, 35: 2303649

    Article  CAS  Google Scholar 

  10. Li F, Yue X, Cheng L, et al. Hydrophobicity-aerophilicity effect boosting efficient CO2 photoreduction in graphitic carbon nitride modified with fluorine-containing groups. Chem Eng J, 2023, 452: 139463

    Article  CAS  Google Scholar 

  11. Wang K, Qin H, Shao X, et al. Unveiling S-scheme charge transfer pathways in In2S3/Nb2O5 hybrid nanofiber photocatalysts for low-concentration CO2 hydrogenation. Sol RRL, 2023, 7: 2200963

    Article  CAS  Google Scholar 

  12. Wang J, Wang Z, Dai K, et al. Review on inorganic-organic S-scheme photocatalysts. J Mater Sci Tech, 2023, 165: 187–218

    Article  Google Scholar 

  13. He H, Wang Z, Dai K, et al. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction. Chin J Catal, 2023, 48: 267–278

    Article  CAS  Google Scholar 

  14. Xia P, Pan X, Jiang S, et al. Designing a redox heterojunction for photocatalytic “overall nitrogen fixation” under mild conditions. Adv Mater, 2022, 34: 2200563

    Article  CAS  Google Scholar 

  15. Yu Z, Guan C, Yue X, et al. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution. Chin J Catal, 2023, 50: 361–371

    Article  CAS  Google Scholar 

  16. Chen G, Wei F, Zhou Z, et al. Phase junction crystalline carbon nitride nanosheets modified with CdS nanoparticles for photocatalytic CO2 reduction. Sustain Energy Fuels, 2023, 7: 381–388

    Article  CAS  Google Scholar 

  17. Zheng D, Su Y, Wen D, et al. One-pot preparation of potassium, iodine-codoped hydrophilic polymeric carbon nitride with highly efficient quasi-homogeneous photocatalytic H2O2 production. J Catal, 2023, 428: 115180

    Article  CAS  Google Scholar 

  18. Ling GZS, Ng S, Ong W. Tailor-engineered 2D cocatalysts: Harnessing electron-hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv Funct Mater, 2022, 32: 2111875

    Article  CAS  Google Scholar 

  19. Li X, Zhang J, Huo Y, et al. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Appl Catal B-Environ, 2021, 280: 119452

    Article  CAS  Google Scholar 

  20. Hu C, Chen X, Low J, et al. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon. Nat Commun, 2023, 14: 221

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv HJ, Ul Hassan Q, Fan SC, et al. Ultrafine Pd nanoparticles anchored on hierarchically porous titanium-based MOFs for superior photothermal CO2 reduction. Sci China Mater, 2023, 66: 2317–2328

    Article  CAS  Google Scholar 

  22. Shen R, Li X, Qin C, et al. Efficient photocatalytic hydrogen evolution by modulating excitonic effects in Ni-intercalated covalent organic frameworks. Adv Energy Mater, 2023, 13: 2203695

    Article  CAS  Google Scholar 

  23. Wang R, Yang P, Wang S, et al. Distorted carbon nitride nanosheets with activated n → π* transition and preferred textural properties for photocatalytic CO2 reduction. J Catal, 2021, 402: 166–176

    Article  CAS  Google Scholar 

  24. Chen G, Zhou Z, Li B, et al. S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. J Environ Sci, 2023, doi: https://doi.org/10.1016/j.jes.2023.05.028

  25. Wen D, Su Y, Fang J, et al. Synergistically boosted photocatalytic production of hydrogen peroxide via protonation and oxygen doping on graphitic carbon nitride. Nano Energy, 2023, 117: 108917

    Article  CAS  Google Scholar 

  26. Xu X, Huang Y, Dai K, et al. Non-noble-metal CuSe promotes charge separation and photocatalytic CO2 reduction on porous g-C3N4 nanosheets. Sep Purif Tech, 2023, 317: 123887

    Article  CAS  Google Scholar 

  27. Zhang T, Zhao X, Lin M, et al. Surfactant-free synthesis of ordered 1D/2D NiZn-LDH heterostructure through oriented attachment for efficient photocatalytic CO2 reduction with nearly 100% CO selectivity. Sci China Mater, 2023, 66: 2308–2316

    Article  CAS  Google Scholar 

  28. Liu K, Fu J, Zhu L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12: 4903–4908

    Article  CAS  PubMed  Google Scholar 

  29. Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  30. Shi Y, Li J, Mao C, et al. Van der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat Commun, 2021, 12: 5923

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu Z, Xu X, Wang Z. Highly crystalline carbon nitride by covalent remedy for CO2 photoreduction. Sep Purif Tech, 2024, 330: 125457

    Article  CAS  Google Scholar 

  32. Huang T, Wang R, Zhang J. Cyano group modified graphitic carbon nitride supported Ru nanoparticles for enhanced CO2 methanation. Chem Eng J, 2023, 467: 143469

    Article  CAS  Google Scholar 

  33. Hua J, Wang Z, Zhang J, et al. A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction. J Mater Sci Tech, 2023, 156: 64–71

    Article  CAS  Google Scholar 

  34. Li S, Cai M, Wang C, et al. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. J Mater Sci Tech, 2022, 123: 177–190

    Article  CAS  Google Scholar 

  35. Lin M, Jiang W, Yang C, et al. Oriented assembly of metal-organic frameworks and deficient TiO2 nanowires directed by lattice matching for efficient photoreversible color switching. Sci China Mater, 2021, 65: 992–999

    Article  Google Scholar 

  36. Zhang XD, Liu K, Fu JW, et al. Pseudo-copper Ni−Zn alloy catalysts for carbon dioxide reduction to C2 products. Front Phys, 2021, 16: 63500

    Article  ADS  Google Scholar 

  37. Wang Z, Liu R, Zhang J, et al. S-scheme porous g-C3N4/Ag2MoO4 heterojunction composite for CO2 photoreduction. Chin J Struct Chem, 2022, 41: 2206015–2206022

    CAS  Google Scholar 

  38. Feng C, Wu ZP, Huang KW, et al. Surface modification of 2D photocatalysts for solar energy conversion. Adv Mater, 2022, 34: 2200180

    Article  CAS  Google Scholar 

  39. Zhang Y, Wu L, Wang S, et al. Enhanced visible-light photocatalytic hydrogen evolution using two-dimensional carbon nitride sheets with the removal of amine groups. Chin Chem Lett, 2024, 35: 108551

    Article  CAS  Google Scholar 

  40. Li X, Zhang J, Wang Z, et al. Interfacial C−S bonds of g-C3N4/Bi19Br3S27 S-scheme heterojunction for enhanced photocatalytic CO2 reduction. Chem Eur J, 2023, 29: e202202669

    Article  CAS  PubMed  Google Scholar 

  41. Xu D, Cheng B, Wang W, et al. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ, 2018, 231: 368–380

    Article  CAS  Google Scholar 

  42. Ahmad N, Jeffrey Kuo CF, Mustaqeem M, et al. Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2,4-dinitrophenol and CO2 reduction via gas phase adsorption. Mater Today Phys, 2023, 31: 100965

    Article  CAS  Google Scholar 

  43. Huang Y, Mei F, Zhang J, et al. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys-Chim Sin, 2021, 38: 2108028

    Article  Google Scholar 

  44. Liu M, Wageh S, Al-Ghamdi AA, et al. Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity. Chem Commun, 2019, 55: 14023–14026

    Article  CAS  Google Scholar 

  45. Yang C, Hou Y, Luo G, et al. Alkyl group-decorated g-C3N4 for enhanced gas-phase CO2 photoreduction. Nanoscale, 2022, 14: 11972–11978

    Article  CAS  PubMed  Google Scholar 

  46. Chen G, Li HJW, Zhou Y, et al. CoS2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. Nanoscale, 2021, 13: 13604–13609

    Article  CAS  PubMed  Google Scholar 

  47. Fu J, Wang S, Wang Z, et al. Graphitic carbon nitride based single-atom photocatalysts. Front Phys, 2020, 15: 33201

    Article  ADS  Google Scholar 

  48. Wang J, Wang G, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal, 2021, 42: 56–68

    Article  Google Scholar 

  49. Cao S, Li Y, Zhu B, et al. Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal, 2017, 349: 208–217

    Article  CAS  Google Scholar 

  50. Sha P, Huang L, Zhao J, et al. Carbon nitrides with grafted dual-functional ligands as electron acceptors and active sites for ultra-stable photocatalytic H2O2 production. ACS Catal, 2023, 13: 10474–10486

    Article  CAS  Google Scholar 

  51. Huo Y, Zhang J, Dai K, et al. Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity. ACS Appl Energy Mater, 2021, 4: 956–968

    Article  CAS  Google Scholar 

  52. Li X, Wang Z, Zhang J, et al. Branch-like CdxZn1−xSe/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Mater Today Phys, 2022, 26: 100729

    Article  CAS  Google Scholar 

  53. Wang L, Fei X, Zhang L, et al. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. J Mater Sci Tech, 2022, 112: 1–10

    Article  CAS  Google Scholar 

  54. Li H, Cheng C, Yang Z, et al. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat Commun, 2022, 13: 6466

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Cao S, Yu J. Nanocages of polymeric carbon nitride from low-temperature supramolecular preorganization for photocatalytic CO2 reduction. Sol RRL, 2020, 4: 1900469

    Article  CAS  Google Scholar 

  56. Yu B, Wu Y, Meng F, et al. Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem Eng J, 2022, 429: 132456

    Article  CAS  Google Scholar 

  57. Wang Y, Xie Y, Yu S, et al. Ni doping in unit cell of BiOBr to increase dipole moment and induce spin polarization for promoting CO2 photoreduction via enhanced build-in electric field. Appl Catal B-Environ, 2023, 327: 122420

    Article  CAS  Google Scholar 

  58. He J, Wang X, Jin S, et al. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chin J Catal, 2022, 43: 1306–1315

    Article  CAS  Google Scholar 

  59. Wang M, Chen D, Li N, et al. Ni−Co bimetallic hydroxide nanosheet arrays anchored on graphene for adsorption-induced enhanced photocatalytic CO2 reduction. Adv Mater, 2022, 34: 2202960

    Article  CAS  Google Scholar 

  60. Wang ZL, Wang J, Zhang J F, et al. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions. Acta Phys Chim Sin, 2023, 39: 2209037

    Google Scholar 

  61. Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  62. Zhang G, Xu Y, Rauf M, et al. Breaking the limitation of elevated coulomb interaction in crystalline carbon nitride for visible and near-infrared light photoactivity. Adv Sci, 2022, 9: 2201677

    Article  CAS  Google Scholar 

  63. Chen D, Li X, Dai K, et al. Microwave-assisted synthesis of organic-inorganic hybrid porous g-C3N4/CdS-diethylenetriamine S-scheme heterojunctions with enhanced visible light hydrogen production. J Phys D-Appl Phys, 2022, 55: 244001

    Article  ADS  Google Scholar 

  64. Zhang Z, Liu W, Zhang Y, et al. Bioinspired atomic manganese site accelerates oxo-dehydrogenation of N-heterocycles over a conjugated tri-s-triazine framework. ACS Catal, 2021, 11: 313–322

    Article  Google Scholar 

  65. Zhao Z, Dai K, Zhang J, et al. In situ preparation of Mn0.2Cd0.8 S-diethylenetriamine/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic hydrogen production. Adv Sustain Syst, 2023, 7: 2100498

    Article  CAS  Google Scholar 

  66. Wang X, Chen Q, Zhou Y, et al. Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products. Nano Res, 2023, doi: https://doi.org/10.1007/s12274-023-5910-9

  67. Li J, Pan W, Liu Q, et al. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J Am Chem Soc, 2021, 143: 6551–6559

    Article  CAS  PubMed  Google Scholar 

  68. Xiao H, Qian Q, Zang Z. Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction. Sci China Mater, 2023, 66: 1810–1819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFE0126500), the National Natural Science Foundation of China (22278169, 22150610467, 52372253, and 51973078), the Excellent Scientific Research and Innovation Team of the Education Department of Anhui Province (2022AH010028), the Major projects of Education Department of Anhui Province (2022AH040068), the Key Foundation of Educational Commission of Anhui Province (2022AH050396 and 2022AH050376), Anhui Provincial Quality Engineering Project (2022sx13), the Innovation Fund for Postgraduates of Huaibei Normal University (CX2023038), Surplus Funds to Expand Research Projects of Huaibei Normal University (2023ZK045), and the Open Project from the Key Laboratory of Green and Precise Synthetic Chemistry and Applications (2020KF07).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen D wrote the paper. Wang Z helped with the calculation. Fu J and Zhang J gave some valuable suggestions on the revision. Dai K reviewed the manuscript and finalized the final version. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Junwei Fu  (傅俊伟), Jinfeng Zhang  (张金锋) or Kai Dai  (代凯).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Dongdong Chen is currently pursuing an MS degree at the School of Physics and Electronic Information, Huaibei Normal University. His research interests mainly focus on semiconductor photocatalysis.

Jinfeng Zhang received his MS degree from Ningxia University in 2007 and his PhD degree from Wuhan University of Technology in 2016. He carried out postdoctoral research at Wuhan University of Technology from 2016 to 2018. Since the end of 2007, he has been working at Huaibei Normal University. His research interests mainly focus on semiconductor photocatalysis.

Kai Dai is a professor at Huaibei Normal University. He received his PhD degree from Shanghai University in 2007. He worked at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences in 2007, and then at Huaibei Normal University in 2010. His research interests mainly focus on energy conversion and storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wang, Z., Fu, J. et al. Ethyl-activated carbon nitride for efficient photocatalytic CO2 conversion. Sci. China Mater. 67, 541–549 (2024). https://doi.org/10.1007/s40843-023-2770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2770-8

Keywords

Navigation