Skip to main content
Log in

Metallic 1T-MoS2/ZnIn2S4 heterojunction photocatalysts for enhanced photoredox reaction via guiding charge migration

金属相1T-MoS2/ZnIn2S4异质结调控电荷传输从而促进光催化氧化还原反应

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The synergistic coupling of photocatalytic hydrogen evolution and α-C–H bond activation reactions enables the comprehensive harnessing of the redox potential of semiconductor catalysts, yielding exceptionally high utilization of photocatalytic technology. Guiding and optimizing the charge migration within photocatalysts constitute a pivotal strategy for achieving remarkable overall solar energy conversion efficiency. Here, we engineer metallic 1T-MoS2/ZnIn2S4 heterojunction photocatalysts by incorporating the distinctive 1T-MoS2 structure into the intricate flower-like ZnIn2S4 framework. The modulation of charge migration within the 1T-MoS2/ZnIn2S4 heterojunction photocatalysts is induced by an engineered interfacial electric field and an efficient hole transfer agent (benzyl alcohol). Steering charge migration results in an impressive 4.6-fold enhancement in photocatalytic performance compared with the pristine ZnIn2S4. Moreover, comprehensive spectroscopy and theoretical analyses prove that the interfacial electric field facilitates the rapid electron transfer along the direction from the [S–Mo] to [In−S] layers. Simultaneously, swift hole capture is achieved by dehydrogenating the α-C–H bond in benzyl alcohol.

摘要

近年来, 光催化产氢与有机物氧化的偶联反应备受关注, 如何设计高效双功能光催化剂实现偶联反应成为研究重点. 在众多光催化剂中, ZnIn2S4以其优异的可见光吸收能力、本征的极化电场以及较强的氧化还原能力成为双功能催化剂的热点备选材料. 然而, 电子空穴分离效率低以及光生电子空穴复合率高的问题限制了ZnIn2S4光电转化效率的进一步提高. 针对这一问题, 我们采用了具有较高导电性和独特结构的金属相1T-MoS2作为助催化剂与花状ZnIn2S4复合形成“海胆状”的1T-MoS2/ZnIn2S4欧姆结复合材料. 理论计算结合XPS数据揭示了欧姆结与内建电场的形成, 一系列光谱表征表明由欧姆结所形成的强内建电场促进了ZnIn2S4体内光生电子快速向1T-MoS2转移, 同时活性测试与EPR表征证明了苯甲醇的氧化反应可以作为光生空穴的有效捕获剂. 最终, 1T-MoS2/ZnIn2S4复合光催化剂实现了4.6倍光催化性能的提高, 420 nm波长下表光量子效率达6.75%. 本项工作通过精确调节电荷转移机制, 实现了ZnIn2S4双功能催化剂光电效率的进一步提高, 为光催化剂载流子调控设计提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581: 411–414

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Meng X, Zhu C, Wang X, et al. Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion. Nat Commun, 2023, 14: 2643

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res, 2013, 46: 1900–1909

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Y, Ren J, Huang G, et al. Red phosphorus grafted high-index (116) faceted anatase TiO2 for Z-scheme photocatalytic pure water splitting. Adv Funct Mater, 2023, 2311623

  5. Bie C, Zhu B, Wang L, et al. A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis. Angew Chem Int Ed, 2022, 61: e202212045

    Article  ADS  CAS  Google Scholar 

  6. An Z, Xue H, Sun J, et al. Co-construction of sulfur vacancies and heterogeneous interface into Ni3S2/MoS2 catalysts to achieve highly efficient overall water splitting, Chin J Struct Chem, 2022, 41: 2208037–2208043

    CAS  Google Scholar 

  7. Wang S, Wang Y, Zhang SL, et al. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv Mater, 2019, 31: 1903404

    Article  CAS  Google Scholar 

  8. Bie C, Wang L, Yu J. Challenges for photocatalytic overall water splitting. Chem, 2022, 8: 1567–1574

    Article  CAS  Google Scholar 

  9. Huang H, Zhao J, Du Y, et al. Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano, 2020, 14: 16689–16697

    Article  CAS  PubMed  Google Scholar 

  10. Xin X, Li Z, Chi M, et al. A recoverable polyoxometalate-ionic liquid catalyst for selective cleavage of lignin β-O-4 models under mild conditions. Green Chem, 2023, 25: 2815–2824

    Article  CAS  Google Scholar 

  11. Pan Y, Zhang H, Zhang B, et al. Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat Commun, 2023, 14: 1013

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang L, Yu J. Photocatalytic phosphine-mediated water activation generates hydrogen atom radicals for transfer hydrogenation of closed-shell π systems. Sci China Mater, 2023, 66: 4133–4134

    Article  Google Scholar 

  13. Xiang X, Zhang L, Luo C, et al. Ultrafast electron transfer from CdS quantum dots to atomically-dispersed Pt for enhanced H2 evolution and value-added chemical synthesis. Appl Catal B-Environ, 2024, 340: 123196

    Article  CAS  Google Scholar 

  14. Xiang X, Zhu B, Zhang J, et al. Photocatalytic H2-production and benzyl-alcohol-oxidation mechanism over CdS using Co2+ as hole co-catalyst. Appl Catal B-Environ, 2023, 324: 122301

    Article  CAS  Google Scholar 

  15. Li S, Li N, Li G, et al. Silver-modified polyniobotungstate for the visible light-induced simultaneous cleavage of C–C and C–N bonds. Polyoxometalates, 2023, 2: 9140024

    Article  Google Scholar 

  16. Zhang S, Liu X, Liu C, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano, 2018, 12: 751–758

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  17. Wan J, Liu L, Wu Y, et al. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. Adv Funct Mater, 2022, 32: 2203252

    Article  CAS  Google Scholar 

  18. Wang S, Guan BY, Lou XWD. Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J Am Chem Soc, 2018, 140: 5037–5040

    Article  CAS  PubMed  Google Scholar 

  19. Han Q, Li L, Gao W, et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl Mater Interfaces, 2021, 13: 15092–15100

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Yang Y, Gu M, et al. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chin J Catal, 2023, 53: 123–133

    Article  CAS  Google Scholar 

  21. Xiong Z, Hou Y, Yuan R, et al. Hollow NiCo2S4 nanospheres as a co-catalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys-Chim Sin, 2022, 38: 2111021

    Google Scholar 

  22. Tan M, Ma Y, Yu C, et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D Ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv Funct Mater, 2022, 32: 2111740

    Article  CAS  Google Scholar 

  23. Cheng C, Zhang J, Zhu B, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  24. Wang S, Guan BY, Wang X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc, 2018, 140: 15145–15148

    Article  CAS  PubMed  Google Scholar 

  25. Jiang R, Mao L, Zhao Y, et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci China Mater, 2023, 66: 139–149

    Article  CAS  Google Scholar 

  26. Wang Z, Su B, Xu J, et al. Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int J Hydrogen Energy, 2020, 45: 4113–4121

    Article  CAS  Google Scholar 

  27. Chen C, Tang Z, Li J, et al. MnO enabling highly efficient and stable Co–Nx/C for oxygen reduction reaction in both acidic and alkaline media. Adv Funct Mater, 2023, 33: 2210143

    Article  CAS  Google Scholar 

  28. Liu ZY, Lin YD, Hao-Yu YD, et al. Recent advances in polyoxoniobate-catalyzed reactions. Tungsten, 2022, 4: 81–98

    Article  Google Scholar 

  29. Jiao L, Dong Y, Xin X, et al. Three-in-one: achieving a robust and effective hydrogen-evolving hybrid material by integrating polyoxometalate, a photo-responsive metal-organic framework, and in situ generated Pt nanoparticles. J Mater Chem A, 2021, 9: 19725–19733

    Article  CAS  Google Scholar 

  30. Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc, 2022, 144: 17097–17109

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Huang J, Wang L, et al. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew Chem Int Ed, 2022, 61: e202114696

    Article  ADS  CAS  Google Scholar 

  32. Kuang P, Ni Z, Zhu B, et al. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv Mater, 2023, 35: 2303030

    Article  CAS  Google Scholar 

  33. Jiao L, Dong Y, Xin X, et al. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl Catal B-Environ, 2021, 291: 120091

    Article  CAS  Google Scholar 

  34. Huang G, Ye W, Lv C, et al. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. J Mater Sci Tech, 2022, 108: 18–25

    Article  CAS  Google Scholar 

  35. Chen J, Xiao Y, Wang N, et al. Facile synthesis of a Z-scheme CeO2/C3N4 heterojunction with enhanced charge transfer for CO2 photoreduction. Sci China Mater, 2023, 66: 3165–3175

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang Z. Reversing free-electron transfer of sulfide cocatalyst for exceptional photocatalytic H2 evolution. J Mater Sci Tech, 2024, 171: 147–149

    Article  Google Scholar 

  37. Gao D, Long H, Wang X, et al. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv Funct Mater, 2023, 33: 2209994

    Article  CAS  Google Scholar 

  38. Yu W, Richter MH, Buabthong P, et al. Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes. Energy Environ Sci, 2021, 14: 6007–6020

    Article  CAS  Google Scholar 

  39. Zhang R, Tsai IL, Chapman J, et al. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett, 2016, 16: 629–636

    Article  ADS  PubMed  Google Scholar 

  40. Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ Sci Technol, 2017, 51: 8229–8244

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Fang Y, Pan J, He J, et al. Structure Re-determination and superconductivity observation of bulk 1T MoS2. Angew Chem Int Ed, 2018, 57: 1232–1235

    Article  CAS  Google Scholar 

  42. Gao D, Xu J, Wang L, et al. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv Mater, 2022, 34: 2108475

    Article  CAS  Google Scholar 

  43. Zhang Z, Huang L, Zhang J, et al. In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 233: 112–119

    Article  CAS  Google Scholar 

  44. Gao D, Deng P, Zhang J, et al. Reversing free-electron transfer of MoS2+x cocatalyst for optimizing antibonding-orbital occupancy enables high photocatalytic H2 evolution. Angew Chem Int Ed, 2023, 62: e202304559

    Article  CAS  Google Scholar 

  45. Zhang J, Liu J, Meng Z, et al. Electron transfer dynamics in Schottky junction photocatalyst during electron donor-assisted hydrogen production. J Mater Sci Tech, 2023, 159: 1–9

    Article  CAS  Google Scholar 

  46. Wageh S, Al-Ghamdi AA, Al-Hartomy OA, et al. CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism. Chin J Catal, 2022, 43: 586–588

    Article  CAS  Google Scholar 

  47. Jiao Y, Hafez AM, Cao D, et al. Metallic MoS2 for high performance energy storage and energy conversion. Small, 2018, 14: 1800640

    Article  Google Scholar 

  48. Jayabal S, Wu J, Chen J, et al. Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications. Mater Today Energy, 2018, 10: 264–279

    Article  Google Scholar 

  49. Wang X, Zhang Y, Li J, et al. Platinum cluster/carbon quantum dots derived graphene heterostructured carbon nanofibers for efficient and durable solar-driven electrochemical hydrogen evolution. Small Methods, 2022, 6: 2101470

    Article  CAS  Google Scholar 

  50. Ma M, Zhang K, Li P, et al. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed, 2016, 55: 11819–11823

    Article  CAS  Google Scholar 

  51. Wang R, Feng Y, Jiao L, et al. Size-matching encapsulation of a high-nuclearity Ni-containing polyoxometalate into a light-responsive MOF for robust photogeneration of hydrogen. J Mater Chem A, 2023, 11: 5811–5818

    Article  CAS  Google Scholar 

  52. Lu Y, Yang Y, Fan X, et al. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv Mater, 2022, 34: 2108178

    Article  CAS  Google Scholar 

  53. Zhang H, Zhang P, Zhao J, et al. The hole-tunneling heterojunction of hematite-based photoanodes accelerates photosynthetic reaction. Angew Chem Int Ed, 2021, 60: 16009–16018

    Article  CAS  Google Scholar 

  54. Zhu Y, Lv C, Yin Z, et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew Chem Int Ed, 2020, 59: 868–873

    Article  CAS  Google Scholar 

  55. Zhao Z, Xing Y, Li H, et al. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Sci China Mater, 2018, 61: 851–860

    Article  CAS  Google Scholar 

  56. Qin Z, Wang M, Li R, et al. Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation. Sci China Mater, 2018, 61: 861–868

    Article  CAS  Google Scholar 

  57. Huang H, Yuan H, Janssen KPF, et al. Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic-inorganic perovskite materials. ACS Energy Lett, 2018, 3: 755–759

    Article  CAS  Google Scholar 

  58. Wang C, Weng B, Keshavarz M, et al. Photothermal Suzuki coupling over a metal halide perovskite/Pd nanocube composite catalyst. ACS Appl Mater Interfaces, 2022, 14: 17185–17194

    Article  CAS  PubMed  Google Scholar 

  59. Hu Y, Yu X, Liu Q, et al. Highly metallic Co-doped MoS2 nanosheets as an efficient co-catalyst to boost photoredox dual reaction for H2 production and benzyl alcohol oxidation. Carbon, 2022, 188: 70–80

    Article  CAS  Google Scholar 

  60. Dong Y, Feng Y, Li Z, et al. CsPbBr3/polyoxometalate composites for selective photocatalytic oxidation of benzyl alcohol. ACS Catal, 2023, 13: 14346–14355

    Article  CAS  Google Scholar 

  61. Zhang J, Le Y, Zhang Y. Bifunctional photocatalyst for H2 production and high-value product synthesis. J Mater Sci Tech, 2023, 142: 121–123

    Article  CAS  Google Scholar 

  62. Hou H, Zeng X, Zhang X. 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Sci China Mater, 2020, 63: 2119–2152

    Article  CAS  Google Scholar 

  63. Geng X, Sun W, Wu W, et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun, 2016, 7: 10672

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sokolikova MS, Mattevi C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem Soc Rev, 2020, 49: 3952–3980

    Article  CAS  PubMed  Google Scholar 

  65. Luo R, Gao M, Wang C, et al. Probing functional structures, defects, and interfaces of 2D transition metal dichalcogenides by electron microscopy. Adv Funct Mater, 2024, 34: 2307625

    Article  CAS  Google Scholar 

  66. Wang S, Li Y, Hu Y, et al. One-step synthesis of 1T MoS2 hierarchical nanospheres for electrocatalytic hydrogen evolution. ACS Appl Energy Mater, 2022, 5: 11705–11712

    Article  CAS  Google Scholar 

  67. Ye S, Li J, Feng Y, et al. Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light. Sci China Mater, 2023, 66: 3146–3154

    Article  CAS  Google Scholar 

  68. He X, Wu J, Li K, et al. Z-scheme 2D/2D heterojunction of ZnIn2S4/Ti-BPDC enhancing photocatalytic hydrogen evolution under visible light irradiation. Sci China Mater, 2023, 66: 3155–3164

    Article  CAS  Google Scholar 

  69. Xia Y, Cheng B, Fan J, et al. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci China Mater, 2020, 63: 552–565

    Article  CAS  Google Scholar 

  70. Zhang H, Ma L, Ming J, et al. Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl Catal B-Environ, 2019, 243: 481–489

    Article  CAS  Google Scholar 

  71. Wang J, Guo C, Jiang Y, et al. Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation. Sci China Mater, 2023, 66: 1053–1061

    Article  CAS  Google Scholar 

  72. Wang X, Han Y, Li W, et al. Doped carbon dots enable highly efficient multiple-color room temperature phosphorescence. Adv Opt Mater, 2023, 2301962

  73. Su B, Huang H, Ding Z, et al. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 124: 164–170

    Article  CAS  Google Scholar 

  74. He B, Xiao P, Wan S, et al. Rapid charge transfer endowed by interfacial Ni–O bonding in S-scheme heterojunction for efficient photocatalytic H2 and imine production. Angew Chem Int Ed, 2023, 62: e202313172

    Article  CAS  Google Scholar 

  75. Su B, Zheng M, Lin W, et al. S-Scheme Co9 S8@Cd0.8Zn0.2 S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater, 2023, 13: 2203290

    Article  CAS  Google Scholar 

  76. Yang Y, Wu J, Cheng B, et al. Photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual co-catalysts. Chin J Struc Chem, 2022, 41: 2206006–2206014

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975110, 22378219, 22302106) and the Technology Support Program for the Youth Innovation Team of Shandong Higher Education Institutions (2023KJ225). Prof. Tang H and Zhang H also appreciate the support from Taishan Youth Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang H and Liu Y performed the experiments, analyzed the data and wrote the draft with support from Yao X, Shan W, and Tang H who supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Wei Shan  (山巍) or Hua Tang  (唐华).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Hongwen Zhang received his PhD degree from Fuzhou University in 2019. After postdoctoral training at cMACS Institute of KU Leven University, he joined the School of Environmental Science and Engineering, Qingdao University as an associate professor. His research interests focus on the photoelectrochemical water splitting and plastic degradation.

Wei Shan received his PhD degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2020. After postdoctoral training at the Ocean University of China, he joined the School of Environmental Science and Engineering, Qingdao University. His research interests focus on the piezoelectric catalysis.

Hua Tang received his PhD degree from Wuhan University of Technology in 2008. Then he joined the School of Materials Science and Engineering, Jiangsu University. In 2021, he joined the School of Environmental Science and Engineering, Qingdao University as a professor. His research interests focus on the photocatalytic water splitting and plastic high-value conversion.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yao, X., Shan, W. et al. Metallic 1T-MoS2/ZnIn2S4 heterojunction photocatalysts for enhanced photoredox reaction via guiding charge migration. Sci. China Mater. 67, 532–540 (2024). https://doi.org/10.1007/s40843-023-2769-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2769-8

Keywords

Navigation