Skip to main content
Log in

g-C3N4-based S-scheme heterojunction photocatalysts

g-C3N4基S型异质结光催化剂

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the vigorous progress of industrialization, energy shortage and environmental contamination emerge increasingly serious. Photocatalysis technology is known as a hopeful approach to resolving the above crises owing to its numerous prominent advantages and widespread applications. Among various photocatalysts, graphitic carbon nitride (g-C3N4) has been broadly applied in fields of fuel production and environment purification because of its unique electronic structure, extreme thermal stability, and prominent photoelectrical activity. However, single-component g-C3N4, similar to other photocatalysts, usually suffer from low photocatalytic efficiency due to the fact that single-constituent photocatalysts cannot synchronously equip with strong redox abilities of photogenerated charges and high light energy utilization. Fortunately, constructing Step-scheme (S-scheme) heterojunctions between g-C3N4 with other semiconductor photocatalysts can simultaneously overcome the typical shortcomings of low light energy utilization, rapid recombination, and weak redox abilities of carriers, thus prominently boosting its catalytic reaction rate. In view of the currently extensive reports of g-C3N4-based S-scheme heterojunctions, this review presents a relatively comprehensive comment on the latest research progress of the background, the proposal of conception, fundamental theory, design and preparation, characterization methods of g-C3N4-based S-scheme heterojunctions. Additionally, various applications of g-C3N4-based S-scheme heterojunctions have been detailly illustrated through example discussion and list comparison, involving photocatalytic H2 generation, CO2 reduction, H2O2 evolution, pollutant degradation, and others. Finally, the research progress and shortcomings of g-C3N4-based S-scheme heterojunctions are summarized, and the future research direction is prospected.

摘要

随着工业化的蓬勃发展, 能源短缺和环境污染日益严重, 威胁到人类的生存. 光催化技术因其诸多突出优点和广泛的应用前景被认为是解决能源和环境危机最有前途的技术之一. 在众多光催化剂中, 石墨氮化碳(g-C3N4)以其独特的电子结构、较高的热稳定性和突出的光电活性, 在清洁燃料生产和环境净化领域得到广泛应用. 然而, 单组分g-C3N4与其他光催化剂一样, 不可能同时拥有高的太阳能利用效率和强氧化还原能力的光生电荷, 导致其光催化效率较低. 幸运的是, g-C3N4与另一半导体构建异质结可以同时克服太阳能利用效率低、载流子重组快、氧化还原能力弱的缺点, 从而显著提高其光催化性能. 鉴于目前g-C3N4基S型异质结的广泛研究, 本文对g-C3N4基S型异质结研究背景、概念提出、基本理论、设计制备、表征方法等方面的最新研究进展进行了较全面的综述. 此外, 通过实例讨论和列表比较详细讨论了g-C3N4基S型异质结的各种应用, 包括光催化制H2、还原CO2、降解污染物、生产H2O2. 最后, 总结了g-C3N4基S型异质结当前的研究进展和不足, 并对未来的研究方向进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xiang X, Wang L, Zhang J, et al. Cadmium chalcogenide (CdS, CdSe, CdTe) quantum dots for solar-to-fuel conversion. Adv Photonics Res, 2022, 3: 2200065

    Article  CAS  Google Scholar 

  2. Sayed M, Yu J, Liu G, et al. Non-noble plasmonic metal-based photocatalysts. Chem Rev, 2022, 122: 10484–10537

    Article  CAS  PubMed  Google Scholar 

  3. Gao D, Long H, Wang X, et al. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv Funct Mater, 2023, 33: 2209994

    Article  CAS  Google Scholar 

  4. Yang Y, Wu J, Cheng B, et al. Enhanced photocatalytic H2 production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chin J Struct Chem, 2022, 41: 2206006–2206014

    CAS  Google Scholar 

  5. Bie C, Cheng B, Ho W, et al. Graphdiyne-based photocatalysts for solar fuel production. Green Chem, 2022, 24: 5739–5754

    Article  CAS  Google Scholar 

  6. Wang M, Wang P, Wang X, et al. Self-optimized H-adsorption affinity of CuRu alloy cocatalysts towards efficient photocatalytic H2 evolution. J Mater Sci Tech, 2024, 174: 168–175

    Article  Google Scholar 

  7. Xu J, Zhong W, Zhang X, et al. Triggering the channel-sulfur sites in 1T′-ReS2 cocatalyst toward splendid photocatalytic hydrogen generation. Small, 2023, 19: 2303960

    Article  CAS  Google Scholar 

  8. Yang Y, Cheng B, Yu J, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res, 2021, 16: 4506–4514

    Article  ADS  Google Scholar 

  9. Bie C, Zhu B, Wang L, et al. A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis. Angew Chem Int Ed, 2022, 61: e202212045

    Article  CAS  ADS  Google Scholar 

  10. Zhao B, Zhong W, Chen F, et al. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chin J Catal, 2023, 52: 127–143

    Article  CAS  Google Scholar 

  11. Wu X, Gao D, Yu H, et al. High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2-evolution performance. Nanoscale, 2019, 11: 9608–9616

    Article  CAS  PubMed  Google Scholar 

  12. Bie C, Wang L, Yu J. Challenges for photocatalytic overall water splitting. Chem, 2022, 8: 1567–1574

    Article  CAS  Google Scholar 

  13. Gao D, Deng P, Zhang J, et al. Reversing free-electron transfer of MoS2+x cocatalyst for optimizing antibonding-orbital occupancy enables high photocatalytic H2 evolution. Angew Chem Int Ed, 2023, 62: e202304559

    Article  CAS  Google Scholar 

  14. Zhong W, Xu J, Zhang X, et al. Charging d-orbital electron of ReS2+x cocatalyst enables splendid alkaline photocatalytic H2 evolution. Adv Funct Mater, 2023, 33: 2302325

    Article  CAS  Google Scholar 

  15. He B, Wang Z, Xiao P, et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv Mater, 2022, 34: 2203225

    Article  CAS  Google Scholar 

  16. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  17. Cao S, Yu J, Wageh S, et al. H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst. J Mater Chem A, 2022, 10: 17174–17184

    Article  CAS  Google Scholar 

  18. Serpone N, Borgarello E, Grätzel M. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions, improved efficiency through inter-particle electron transfer. J Chem Soc Chem Commun, 1984, 6: 342–344

    Article  Google Scholar 

  19. Sayama K, Mukasa K, Abe R, et al. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobiol A-Chem, 2002, 148: 71–77

    Article  CAS  Google Scholar 

  20. Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater, 2006, 5: 782–786

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Wang Z, Cheng B, Zhang L, et al. S-scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin J Catal, 2022, 43: 1657–1666

    Article  CAS  Google Scholar 

  22. Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  23. Cheng C, Zhu B, Cheng B, et al. Catalytic conversion of styrene to benzaldehyde over S-scheme photocatalysts by singlet oxygen. ACS Catal, 2023, 13: 459–468

    Article  CAS  Google Scholar 

  24. Han G, Xu F, Cheng B, et al. Enhanced photocatalytic H2O2 production over inverse opal ZnO@ polydopamine S-scheme heterojunctions. Acta Physico Chim Sin, 2022, 0: 2112037–0

    Article  Google Scholar 

  25. Wageh S, Al-Ghamdi AA, Al-Hartomy OA, et al. CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism. Chin J Catal, 2022, 43: 586–588

    Article  CAS  Google Scholar 

  26. Wang L, Zhang J, Yu H, et al. Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions. J Phys Chem Lett, 2022, 13: 4695–4700

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang L, Mousavi M, et al. Molecular-level engineering of S-scheme heterojunction: The site-specific role for directional charge transfer. Chin J Struct Chem, 2022, 41: 2206003–2206005

    CAS  Google Scholar 

  28. Xu Q, Wageh S, Al-Ghamdi AA, et al. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2022, 124: 171–173

    Article  Google Scholar 

  29. Wu X, Ma H, Zhong W, et al. Porous crystalline g-C3N4: Bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl Catal B-Environ, 2020, 271: 118899

    Article  CAS  Google Scholar 

  30. Li Y, Xia Z, Yang Q, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Tech, 2022, 125: 128–144

    Article  CAS  Google Scholar 

  31. Wu X, Chen G, Li L, et al. ZnIn2S4-based S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2023, 167: 184–204

    Article  Google Scholar 

  32. Gong S, Teng X, Niu Y, et al. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Appl Catal B-Environ, 2021, 298: 120521

    Article  CAS  Google Scholar 

  33. Cheng C, Zhang J, Zhu B, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  34. Wu X, Chen G, Wang J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Physico Chim Sin, 2023, 0: 2212016

    Article  Google Scholar 

  35. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  36. Zhang J, Zhang L, Wang W, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J Phys Chem Lett, 2022, 13: 8462–8469

    Article  CAS  PubMed  Google Scholar 

  37. Qaraah FA, Mahyoub SA, Hezam A, et al. Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2022, 315: 121585

    Article  CAS  Google Scholar 

  38. Cheng C, He B, Fan J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv Mater, 2021, 33: 2100317

    Article  CAS  Google Scholar 

  39. Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  40. Wu X, Ma H, Wang K, et al. High-yield and crystalline graphitic carbon nitride photocatalyst: One-step sodium acetate-mediated synthesis and improved hydrogen-evolution performance. J Colloid Interface Sci, 2023, 633: 817–827

    Article  CAS  PubMed  Google Scholar 

  41. Wu X, Gao D, Wang P, et al. NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon, 2019, 153: 757–766

    Article  CAS  Google Scholar 

  42. Li S, Wang Y, Wang J, et al. Efficient photocatalytic hydrogen evolution reaction promoted via a synergistic strategy of S-scheme heterojunction structure combined with surface plasmon resonance effect. Chem Eng J, 2023, 466: 143184

    Article  CAS  Google Scholar 

  43. Shi WL, Xu Z, Shi YX, et al. Constructing S-scheme charge separation in cobalt phthalocyanine/oxygen-doped g-C3N4 heterojunction with enhanced photothermal-assisted photocatalytic H2 evolution. Rare Met, 2024, 43: 198–211

    Article  CAS  Google Scholar 

  44. Zhu B, Tan H, Fan J, et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. J Materiomics, 2021, 7: 988–997

    Article  ADS  Google Scholar 

  45. Hafeez HY, Mohammed J, Ndikilar CE, et al. Synergistic utilization of magnetic rGO/NiFe2O4-g-C3N4 S-scheme heterostructure photocatalyst with enhanced charge carrier separation and transfer: A highly stable and robust photocatalyst for efficient solar fuel (hydrogen) generation. Ceramics Int, 2023, 49: 5269–5278

    Article  CAS  Google Scholar 

  46. Hassan AE, Elsayed MH, Hussien MSA, et al. V2O5 nanoribbons/N-deficient g-C3N4 heterostructure for enhanced visible-light photocatalytic performance. Int J Hydrogen Energy, 2023, 48: 9620–9635

    Article  CAS  Google Scholar 

  47. Zhang J, Zhao Y, Qi K, et al. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. J Mater Sci Tech, 2024, 172: 145–155

    Article  Google Scholar 

  48. Zhu Z, Zhang H, Teng Y, et al. Enhanced photocatalytic hydrogen evolution over Ce-TiO2/graphite/g-C3N4 ternary S-scheme heterojunction. Surfs Interfaces, 2023, 41: 103160

    Article  CAS  Google Scholar 

  49. Sun T, Li C, Bao Y, et al. S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production. Acta Physico Chim Sin, 2023, 0: 2212009

    Article  Google Scholar 

  50. Mo X, Zhang X, Lin B, et al. Boosting interfacial S-scheme charge transfer and photocatalytic H2-production activity of 1D/2D WO3/g-C3N4 heterojunction by molecular benzene-rings integration. J Mater Sci Tech, 2023, 145: 174–184

    Article  CAS  Google Scholar 

  51. Fang W, Yang Y, Liu J, et al. Self-assembly core-shell BixY1−xVO4@g-C3N4 as an S-scheme heterojunction photocatalyst for pure water splitting. Int J Hydrogen Energy, 2023, 48: 25379–25389

    Article  CAS  Google Scholar 

  52. Lei Z, Cao X, Fan J, et al. Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge. Chem Eng J, 2023, 457: 141249

    Article  CAS  ADS  Google Scholar 

  53. Alam U, Pandey A, Verma N. An anthraquinone-integrated S-scheme-based NiTiO3-g-C3N4 composite with enhanced hydrogen production activity. Int J Hydrogen Energy, 2023, 48: 2532–2541

    Article  CAS  Google Scholar 

  54. Shang Y, Fan H, Yang X, et al. Synergism between chemisorption and unique electron transfer pathway in S-scheme AgI/g-C3N4 heterojunction for improving the photocatalytic H2 evolution. J Colloid Interface Sci, 2023, 631: 269–280

    Article  CAS  PubMed  Google Scholar 

  55. Sun X, Li L, Hu T, et al. In2S3/g-C3N4/CoZnAl-LDH composites with the lamellar dual S-scheme heterostructure and its enhanced photocatalytic performance. Colloids Surfs A-Physicochem Eng Aspects, 2023, 658: 130744

    Article  CAS  Google Scholar 

  56. Xu Z, Zhong J, Chen J, et al. Construction of S-scheme Co3O4/g-C3N4 heterojunctions with boosted photocatalytic H2 production performance. Surfs Interfaces, 2023, 38: 102838

    Article  CAS  Google Scholar 

  57. Wang D, Miao C, Zhao X, et al. Construction of Co-doped Sn3O4/g-C3N4 heterojunction with enhanced interface transmission capatibility for improving hydrogen production. Ceramics Int, 2023, 49: 27724–27732

    Article  CAS  Google Scholar 

  58. Yang J, Wu X, Mei Z, et al. CVD assisted synthesis of macro/mesoporous TiO2/g-C3N4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Adv Sustain Syst, 2022, 6: 2200056

    Article  CAS  Google Scholar 

  59. Mu F, Dai B, Wu Y, et al. 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation. J Colloid Interface Sci, 2022, 612: 722–736

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Jiang J, Xiong Z, Wang H, et al. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Tech, 2022, 118: 15–24

    Article  CAS  Google Scholar 

  61. Zhao Z, Dai K, Zhang J, et al. In situ preparation of Mn0.2Cd0.8S-diethylenetriamine/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic hydrogen production. Adv Sustain Syst, 2023, 7: 2100498

    Article  CAS  Google Scholar 

  62. Shi W, Sun W, Liu Y, et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation Renew Energy, 2022, 182: 958–968

    Article  CAS  Google Scholar 

  63. Feng K, Tian J, Hu X, et al. Active-center-enriched Ni0.85Se/g-C3N4 S-scheme heterojunction for efficient photocatalytic H2 generation. Int J Hydrogen Energy, 2022, 47: 4601–4613

    Article  CAS  Google Scholar 

  64. Zhou H, Ke J, Wu H, et al. Manganese tungstate/graphitic carbon nitride S-scheme heterojunction for boosting hydrogen evolution and mechanism exploration. Mater Today Energy, 2022, 23: 100918

    Article  CAS  Google Scholar 

  65. Zhang Q, Bai X, Hu X, et al. Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface. Appl Surf Sci, 2022, 579: 152224

    Article  CAS  Google Scholar 

  66. Bi F, Su Y, Zhang Y, et al. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl Catal B-Environ, 2022, 306: 121109

    Article  CAS  Google Scholar 

  67. Li X, Zhang J, Huo Y, et al. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Appl Catal B-Environ, 2021, 280: 119452

    Article  CAS  Google Scholar 

  68. Guo B, Liu B, Wang C, et al. S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation. J Environ Chem Eng, 2022, 10: 107118

    Article  CAS  Google Scholar 

  69. Dai B, Li Y, Xu J, et al. Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: Performance and mechanism insight. Appl Surf Sci, 2022, 592: 153309

    Article  CAS  Google Scholar 

  70. Ran Y, Cui Y, Zhang Y, et al. Assembly-synthesis of puff pastry-like g-C3N4/CdS heterostructure as S-junctions for efficient photocatalytic water splitting. Chem Eng J, 2022, 431: 133348

    Article  CAS  Google Scholar 

  71. Li C, Zhao Y, Fan J, et al. Nanoarchitectonics of S-scheme 0D/2D SbVO4/g-C3N4 photocatalyst for enhanced pollution degradation and H2 generation. J Alloys Compd, 2022, 919: 165752

    Article  CAS  Google Scholar 

  72. Wang D, Lin Z, Miao C, et al. An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution. J Industrial Eng Chem, 2022, 113: 380–388

    Article  CAS  Google Scholar 

  73. Chen Y, Wang Q, Huang H, et al. Effective solar driven H2 production by Mn0.5Cd0.5Se/g-C3N4 S-scheme heterojunction photocatalysts. Int J Hydrogen Energy, 2021, 46: 32514–32522

    Article  CAS  Google Scholar 

  74. Chen X, Ke X, Zhang J, et al. Insight into the synergy of amine-modified S-scheme Cd0.5Zn0.5Se/porous g-C3N4 and noble-metal-free Ni2P for boosting photocatalytic hydrogen generation. Ceramics Int, 2021, 47: 13488–13499

    Article  CAS  Google Scholar 

  75. Chen Y, Su F, Xie H, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem Eng J, 2021, 404: 126498

    Article  CAS  ADS  Google Scholar 

  76. Li X, Kang B, Dong F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021, 81: 105671

    Article  CAS  Google Scholar 

  77. Ren D, Zhang W, Ding Y, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Sol RRL, 2020, 4: 1900423

    Article  CAS  Google Scholar 

  78. Liu J, Wei X, Sun W, et al. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis. Environ Res, 2021, 197: 111136

    Article  CAS  PubMed  Google Scholar 

  79. Chen X, Hu T, Zhang J, et al. Diethylenetriamine synergistic boosting photocatalytic performance with porous g-C3N4/CdS-diethylene-triamine 2D/2D S-scheme heterojunction. J Alloys Compd, 2021, 863: 158068

    Article  CAS  Google Scholar 

  80. Xu Q, Ma D, Yang S, et al. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Appl Surf Sci, 2019, 495: 143555

    Article  CAS  Google Scholar 

  81. Shang Y, Wang C, Yan C, et al. An efficient and multifunctional S-scheme heterojunction photocatalyst constructed by tungsten oxide and graphitic carbon nitride: Design and mechanism study. J Colloid Interface Sci, 2023, 634: 195–208

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Li H, Tao S, Wan S, et al. S-scheme heterojunction of ZnCdS nano-spheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production. Chin J Catal, 2023, 46: 167–176

    Article  CAS  Google Scholar 

  83. Ding Q, Zou X, Ke J, et al. S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting. Renew Energy, 2023, 203: 677–685

    Article  CAS  Google Scholar 

  84. Wang Y, Xing Z, Yang Y, et al. Oxygen-Defective Bi2MoO6/g-C3N4 hollow tubulars S-scheme heterojunctions toward optimized photocatalytic performance. J Colloid Interface Sci, 2024, 653: 1566–1576

    Article  CAS  PubMed  Google Scholar 

  85. Wang L, Zhu B, Zhang J, et al. S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  86. Wang L, Fei X, Zhang L, et al. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. J Mater Sci Tech, 2022, 112: 1–10

    Article  CAS  Google Scholar 

  87. Dai B, Zhao W, Wei W, et al. Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 2022, 193: 272–284

    Article  CAS  Google Scholar 

  88. Zhang X, Kim D, Yan J, et al. Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl Mater Interfaces, 2021, 13: 9762–9770

    Article  CAS  PubMed  Google Scholar 

  89. Bashal AH, Alkanad K, Al-Ghorbani M, et al. Synergistic effect of cocatalyst and S-scheme heterojunction over 2D/2D g-C3N4/MoS2 heterostructure coupled Cu nanoparticles for selective photocatalytic CO2 reduction to CO under visible light irradiation. J Environ Chem Eng, 2023, 11: 109545

    Article  CAS  Google Scholar 

  90. Zhang T, Maihemllti M, Okitsu K, et al. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Appl Surf Sci, 2021, 556: 149828

    Article  Google Scholar 

  91. Wang H, Liu Q, Xu M, et al. Dual-plasma enhanced 2D/2D/2D g-C3N4/Pd/MoO3−x S-scheme heterojunction for high-selectivity photocatalytic CO2 reduction. Appl Surf Sci, 2023, 640: 158420

    Article  CAS  Google Scholar 

  92. Chen X, Pan W, Hong L, et al. Ti3C2-modified g-C3N4/MoSe2 S-scheme heterojunction with full-spectrum response for CO2 photo-reduction to CO and CH4. ChemSusChem, 2023, 16: e202300179

    Article  CAS  PubMed  Google Scholar 

  93. Zhang H, Bian H, Wang F, et al. Enhanced photocatalytic reduction of CO2 over pg-C3N4-supported TiO2 nanoparticles with Ag modification. Colloids Surfs A-Physicochem Eng Aspects, 2023, 674: 131989

    Article  CAS  Google Scholar 

  94. Tahir M, Tahir B. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors. J Mater Sci Tech, 2022, 106: 195–210

    Article  CAS  Google Scholar 

  95. Li L, Ma D, Xu Q, et al. Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chem Eng J, 2022, 437: 135153

    Article  CAS  Google Scholar 

  96. Zhao T, Li D, Zhang Y, et al. Constructing built-in electric field within CsPbBr3/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction. J Colloid Interface Sci, 2022, 628: 966–974

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Wang K, Feng X, Shangguan Y, et al. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chin J Catal, 2022, 43: 246–254

    Article  CAS  Google Scholar 

  98. Li H, Wang D, Miao C, et al. g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation. J Environ Chem Eng, 2022, 10: 108201

    Article  CAS  Google Scholar 

  99. Sayed M, Zhu B, Kuang P, et al. EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-scheme heterojunction for enhanced CO2 photoreduction. Adv Sustain Syst, 2022, 6: 2100264

    Article  CAS  Google Scholar 

  100. Li X, Guan J, Jiang H, et al. rGO modified R-CeO2/g-C3N4 multi-interface contact S-scheme photocatalyst for efficient CO2 photo-reduction. Appl Surf Sci, 2021, 563: 150042

    Article  CAS  Google Scholar 

  101. Wageh S, Al-Ghamdi AA, Jafer R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin J Catal, 2021, 42: 667–669

    Article  CAS  Google Scholar 

  102. Van Pham V, Mai DQ, Bui DP, et al. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ Pollution, 2021, 286: 117510

    Article  CAS  Google Scholar 

  103. Pham VV, Truong TK, Hai LV, et al. S-scheme α-Fe2O3/g-C3N4 nanocomposites as heterojunction photocatalysts for antibiotic degradation. ACS Appl Nano Mater, 2022, 5: 4506–4514

    Article  CAS  Google Scholar 

  104. Dai B, Chen X, Yang X, et al. Designing S-scheme Au/g-C3N4/BiO1.2 I0.6 plasmonic heterojunction for efficient visible-light photocatalysis. Sep Purif Technol, 2022, 287: 120531

    Article  CAS  Google Scholar 

  105. Mkhalid IA, Mohamed RM, Alhaddad M, et al. S-scheme mesoporous Li2MnO3/g-C3N4 heterojunctions as efficient photocatalysts for the mineralization of trichloroethylene in aqueous media. J Colloid Interface Sci, 2022, 614: 160–171

    Article  CAS  PubMed  ADS  Google Scholar 

  106. Van KN, Huu HT, Nguyen Thi VN, et al. Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. Environ Res, 2022, 206: 112556

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Y, Zhang S, Guo X, et al. Efficient Hg0 catalytic removal by direct S-scheme heterostructure of two-dimensional Bi2MoO6 (2 0 0)/g-C3N4 nanosheets under visible light. J Environ Manage, 2023, 347: 119125

    Article  CAS  PubMed  Google Scholar 

  108. Liu K, Chen J, Sun F, et al. Enhanced degradation of azo dyes wastewater by S-scheme heterojunctions photocatalyst g-C3N4/MoS2 intimately coupled Rhodopseudomonas palustris with chitosan modified polyurethane sponge carrier. Int J Hydrogen Energy, 2023, 48: 22319–22333

    Article  CAS  Google Scholar 

  109. Wang J, Ren P, Du Y, et al. Construction of tubular g-C3N4/TiO2 S-scheme photocatalyst for high-efficiency degradation of organic pollutants under visible light. J Alloys Compd, 2023, 947: 169659

    Article  CAS  Google Scholar 

  110. Yang C, Zhang X, Zhou Y, et al. Well-designed MOF-derived hollow octahedral structure TiO2 coupled with ultra-thin porous g-C3N4 to enhance the degradation of real liquor brewing wastewater. Appl Surf Sci, 2023, 616: 156471

    Article  CAS  Google Scholar 

  111. Xu L, Dai R, Yang J, et al. A novel S-scheme g-C3N4/Mn(VO3)2 heterojunction photocatalyst for its superior photocatalytic degradation of broad-spectrum antibiotics. J Alloys Compd, 2023, 936: 168163

    Article  CAS  Google Scholar 

  112. Hu C, Yu B, Zhu Z, et al. Construction of novel S-scheme LaFeO3/g-C3N4 composite with efficient photocatalytic capacity for dye degradation and Cr(VI) reduction. Colloids Surfs A-Physicochem Eng Aspects, 2023, 664: 131189

    Article  CAS  Google Scholar 

  113. Yan J, Chai B, Liu Y, et al. Construction of 3D/2D ZnFe2O4/g-C3N4 S-scheme heterojunction for efficient photo-Fenton degradation of tetracycline hydrochloride. Appl Surf Sci, 2023, 607: 155088

    Article  CAS  Google Scholar 

  114. Dou K, Peng C, Wang R, et al. S-scheme tubular g-C3N4/BiOI heterojunctions for boosting photodegradation of tetracycline and Cr (VI): Mechanism insight, degradation pathway and DFT calculation. Chem Eng J, 2023, 455: 140813

    Article  CAS  Google Scholar 

  115. Lu C, Wang J, Cao D, et al. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Mater Res Bull, 2023, 158: 112064

    Article  CAS  Google Scholar 

  116. Chu Z, Li J, Sohn HY, et al. CeO2-g-C3N4 S-scheme heterojunctions for enhanced photocatalytic performance: Effects of surface C/N ratio on photocatalytic and adsorption properties. Compos Part B-Eng, 2023, 257: 110689

    Article  CAS  Google Scholar 

  117. Li Z, Ai W, Zhang Y, et al. Magnetic carbon nanotube modified S-scheme TiO2−x/g-C3N4/CNFe heterojunction coupled with peroxymonosulfate for effective visible-light-driven photodegradation via enhanced interfacial charge separation. Sep Purif Technol, 2023, 308: 122897

    Article  CAS  Google Scholar 

  118. Sun H, Qin P, Guo J, et al. Enhanced electron channel via the interfacial heterotropic electric field in dual S-scheme g-C3N4/WO3/ZnS photocatalyst for year-round antibiotic degradation under sunlight. Chem Eng J, 2023, 470: 144217

    Article  CAS  Google Scholar 

  119. Zhang JJ, Di J, Zhao YP, et al. Synergistic defect and doping engineering building strong bonded S-scheme heterojunction for photocatalysis. Chemosphere, 2023, 344: 140347

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Gao M, Li Z, Su X, et al. 2D/2D MgO/g-C3N4 S-scheme heterogeneous tight with Mg−N bonds for efficient photo-Fenton degradation: Enhancing both oxygen vacancy and charge migration. Chemosphere, 2023, 343: 140285

    Article  CAS  PubMed  ADS  Google Scholar 

  121. Kumar R, Sudhaik A, Raizada P, et al. Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere, 2023, 337: 139267

    Article  CAS  PubMed  ADS  Google Scholar 

  122. Xu Y, Tang X, Xiao Y, et al. Persulfate promoted visible photocatalytic elimination of bisphenol A by g-C3N4-CeO2 S-scheme heterojunction: The dominant role of photo-induced holes. Chemosphere, 2023, 331: 138765

    Article  CAS  PubMed  ADS  Google Scholar 

  123. Liu H, Sun F, Li X, et al. g-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances. Compos Part B-Eng, 2023, 259: 110746

    Article  CAS  Google Scholar 

  124. Chen X, Li Z, Zhou J, et al. Constructing 2D/2D La2Ce2O7/g-C3N4 S-scheme heterojunction for markedly enhanced interfacial charge separation and photocatalytic activity under visible light irradiation. J Alloys Compd, 2023, 960: 170892

    Article  CAS  Google Scholar 

  125. Hou C, Niu M, Hao J, et al. Construction of an S-scheme g-C3N4/TiOF2 heterostructures with abundant O vacancies: Enhanced photocatalytic activity and mechanism insight. J Alloys Compd, 2023, 938: 168560

    Article  CAS  Google Scholar 

  126. Dong S, Chen S, He F, et al. Construction of a novel N-doped oxygen vacancy-rich TiO2 N−TiO2−x/g-C3N4 S-scheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine. J Alloys Compd, 2022, 908: 164586

    Article  CAS  Google Scholar 

  127. Xu F, Chai B, Liu Y, et al. Superior photo-Fenton activity toward tetracycline degradation by 2D α-Fe2O3 anchored on 2D g-C3N4: S-scheme heterojunction mechanism and accelerated Fe3+/Fe2+ cycle. Colloids Surfs A-Physicochem Eng Aspects, 2022, 652: 129854

    Article  CAS  Google Scholar 

  128. Chen ZJ, Guo H, Liu HY, et al. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline. Chem Eng J, 2022, 438: 135471

    Article  CAS  Google Scholar 

  129. Wang J, Chen C, Zhao Z, et al. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study. J Alloys Compd, 2022, 922: 166288

    Article  CAS  Google Scholar 

  130. Venkatesh G, Palanisamy G, Srinivasan M, et al. CaSnO3 coupled g-C3N4 S-scheme heterostructure photocatalyst for efficient pollutant degradation. Diamond Relat Mater, 2022, 124: 108873

    Article  CAS  ADS  Google Scholar 

  131. Van Viet P, Nguyen TD, Bui DP, et al. Combining SnO2−x and g-C3N4 nanosheets toward S-scheme heterojunction for high selectivity into green products of NO degradation reaction under visible light. J Materiomics, 2022, 8: 1–8

    Article  Google Scholar 

  132. Fang H, Han Y, Feng X, et al. S-scheme heterojunction g-C3N4/Ag/AgNCO for efficient tetracycline removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol, 2022, 296: 121210

    Article  CAS  Google Scholar 

  133. Van Viet P, Nguyen HP, Tran HH, et al. Constructing g-C3N4/SnO2 S-scheme heterojunctions for efficient photocatalytic NO removal and low NO2 generation. J Sci-Adv Mater Devices, 2021, 6: 551–559

    Article  CAS  Google Scholar 

  134. Wang W, Zhang H, Chen Y, et al. Efficient degradation of tetracycline via coupling of photocatalysis and photo-fenton processes over a 2D/2D α-Fe2O3/g-C3N4 S-scheme heterojunction catalyst. Acta Physico Chim Sin, 2022, 0: 2201008–0

    Article  Google Scholar 

  135. Zhang C, Jia M, Xu Z, et al. Constructing 2D/2D N−ZnO/g-C3N4 S-scheme heterojunction: Efficient photocatalytic performance for norfloxacin degradation. Chem Eng J, 2022, 430: 132652

    Article  CAS  Google Scholar 

  136. Van KN, Huu HT, Nguyen Thi VN, et al. Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere, 2022, 289: 133120

    Article  CAS  PubMed  ADS  Google Scholar 

  137. Tang R, Gong D, Deng Y, et al. π−π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chem Eng J, 2022, 427: 131809

    Article  CAS  Google Scholar 

  138. Van Pham V, Truong TK, Le HV, et al. Enhancing green product generation of photocatalytic NO oxidation: A case of WO3 nanoplate/g-C3N4 S-scheme heterojunction. Langmuir, 2022, 38: 4138–4146

    Article  CAS  PubMed  Google Scholar 

  139. Li X, Fang G, Tian Q, et al. Crystal regulation of BiVO4 for efficient photocatalytic degradation in g-C3N4/BiVO4 heterojunction. Appl Surf Sci, 2022, 584: 152642

    Article  CAS  Google Scholar 

  140. Luo J, Han H, Wu J, et al. Excellent photocatalytic activity of MoO3-adorned g-C3N4 systems: Construction of S-scheme heterojunction. Appl Surf Sci, 2022, 604: 154512

    Article  CAS  Google Scholar 

  141. Guo Y, Li M, Huang X, et al. S-scheme g-C3N4/TiO2/CFs heterojunction composites with multi-dimensional through-holes and enhanced visible-light photocatalytic activity. Ceramics Int, 2022, 48: 8196–8208

    Article  CAS  Google Scholar 

  142. Chen N, Jia X, He H, et al. Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/ Ni2P/g-C3N4. Chin J Catal, 2022, 43: 276–287

    Article  CAS  Google Scholar 

  143. He R, Ou S, Liu Y, et al. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity. Chin J Catal, 2022, 43: 370–378

    Article  CAS  Google Scholar 

  144. Ni S, Fu Z, Li L, et al. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surfs A-Physicochem Eng Aspects, 2022, 649: 129475

    Article  CAS  Google Scholar 

  145. Li Y, Wang G, Zhang H, et al. Hierarchical flower-like 0D/3D g-C3N4/ TiO2 S-scheme heterojunction with enhanced photocatalytic activity. Colloids Surfs A-Physicochem Eng Aspects, 2022, 646: 128942

    Article  CAS  Google Scholar 

  146. Lun Y, Hu S, Chen F, et al. Highly enhanced photocatalytic property dominantly owing to the synergic effects of much negative Ecb and S-scheme heterojunctions in composite g-C3N4/Mo-doped WO3. Colloids Surfs A-Physicochem Eng Aspects, 2022, 642: 128682

    Article  CAS  Google Scholar 

  147. Deng X, Wang D, Li H, et al. Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. J Alloys Compd, 2022, 894: 162209

    Article  CAS  Google Scholar 

  148. Feng X, Li X, Su B, et al. Hydrothermal construction of flower-like g-C3N4/NiZnAl-LDH S-scheme heterojunction with oxygen vacancies for enhanced visible-light triggered photocatalytic performance. J Alloys Compd, 2022, 922: 166098

    Article  CAS  Google Scholar 

  149. Elavarasan N, Vignesh S, Srinivasan M, et al. Synergistic S-Scheme mechanism insights of g-C3N4 and rGO combined ZnO-Ag hetero-structure nanocomposite for efficient photocatalytic and anticancer activities. J Alloys Compd, 2022, 906: 164255

    Article  CAS  Google Scholar 

  150. Yuan F, Zheng Y, Gao D, et al. Facile assembly and enhanced visible-light-driven photocatalytic activity of S-scheme BiOBr/g-C3N4 heterojunction for degrading xanthate in wastewater. J Mol Liquids, 2022, 366: 120279

    Article  CAS  Google Scholar 

  151. Nguyen Thi TH, Huu HT, Phi HN, et al. A facile synthesis of SnS2/g-C3N4 S-scheme heterojunction photocatalyst with enhanced photocatalytic performance. J Sci-Adv Mater Devices, 2022, 7: 100402

    Article  CAS  Google Scholar 

  152. Gou L, Wang WQ, Liu EZ, et al. Fabrication of MOF-derived CoTiO3/g-C3N4 S-scheme heterojunction for photocatalyst wastewater treatment. J Alloys Compd, 2022, 918: 165698

    Article  CAS  Google Scholar 

  153. Xu Q, Wang P, Wang Z, et al. Aerosol self-assembly synthesis of g-C3N4/MXene/Ag3PO4 heterostructure for enhanced photocatalytic degradation of tetracycline hydrochloride. Colloids Surfs A-Physicochem Eng Aspects, 2022, 648: 129392

    Article  CAS  Google Scholar 

  154. Tang H, Li R, Fan X, et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant. J Environ Chem Eng, 2022, 10: 107797

    Article  CAS  Google Scholar 

  155. Zhou L, Li Y, Zhang Y, et al. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation. Acta Physico Chim Sin, 2022, 0: 2112027–0

    Article  Google Scholar 

  156. Zhang B, Hu X, Liu E, et al. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin J Catal, 2021, 42: 1519–1529

    Article  CAS  Google Scholar 

  157. Dai Z, Zhen Y, Sun Y, et al. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem Eng J, 2021, 415: 129002

    Article  CAS  Google Scholar 

  158. Lian X, Xue W, Dong S, et al. Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. J Hazard Mater, 2021, 412: 125217

    Article  CAS  PubMed  Google Scholar 

  159. Wang J, Wang G, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation. Chin J Catal, 2021, 42: 56–68

    Article  Google Scholar 

  160. Qin D, Xia Y, Li Q, et al. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. J Mater Sci Tech, 2020, 56: 206–215

    Article  CAS  Google Scholar 

  161. Pan T, Chen D, Xu W, et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J Hazard Mater, 2020, 393: 122366

    Article  CAS  PubMed  Google Scholar 

  162. Li Q, Zhao W, Zhai Z, et al. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J Mater Sci Tech, 2020, 56: 216–226

    Article  CAS  Google Scholar 

  163. Vijayakumar TP, Benoy MD, Duraimurugan J, et al. Investigation on photocatalytic activity of g-C3N4 decorated α-Fe2O3 nanostructure synthesized by hydrothermal method for the visible-light assisted degradation of organic pollutant. Diamond Relat Mater, 2022, 125: 109021

    Article  CAS  ADS  Google Scholar 

  164. He R, Xu D, Li X. Floatable S-scheme photocatalyst for H2O2 production and organic synthesis. J Mater Sci Tech, 2023, 138: 256–258

    Article  CAS  Google Scholar 

  165. Phan PDM, Nguyen DV, Anh NH, et al. S-scheme heterostructured CdS/g-C3N4 nanocatalysts for piezo-photocatalytic synthesis of H2O2. ACS Appl Nano Mater, 2023, 6: 16702–16715

    Article  CAS  Google Scholar 

  166. Wei LW, Liu SH, Wang HP. Visible-light photocatalytic CO2-to-CO and H2 O-to-H2O2 by g-C3N4/Cu2 O−Pd S-scheme heterojunctions. ACS Appl Mater Interfaces, 2023, 15: 25473–25483

    Article  CAS  PubMed  Google Scholar 

  167. Xia Y, Zhu B, Qin X, et al. Zinc porphyrin/g-C3N4 S-scheme photocatalyst for efficient H2O2 production. Chem Eng J, 2023, 467: 143528

    Article  CAS  Google Scholar 

  168. Fang W, Yao S, Wang L, et al. Enhanced photocatalytic overall water splitting via hollow structure Pt/g-C3N4/BiOBr photocatalyst with S-scheme heterojunction. J Alloys Compd, 2022, 891: 162081

    Article  CAS  Google Scholar 

  169. Das KK, Mansingh S, Mohanty R, et al. 0D-2D Fe2O3/Boron-doped g-C3N4 S-scheme exciton engineering for photocatalytic H2O2 production and photo-fenton recalcitrant-pollutant detoxification: Kinetics, influencing factors, and mechanism. J Phys Chem C, 2023, 127: 22–40

    Article  CAS  Google Scholar 

  170. Jiang Z, Long Q, Cheng B, et al. 3D ordered macroporous sulfur-doped g-C3N4/TiO2 S-scheme photocatalysts for efficient H2O2 production in pure water. J Mater Sci Tech, 2023, 162: 1–10

    Article  Google Scholar 

  171. Wang Y, He Y, Chi Y, et al. Construction of S-scheme p-n heterojunction between protonated g-C3N4 and α-MnS nanosphere for photocatalytic H2O2 production and in situ degradation of oxytetracycline. J Environ Chem Eng, 2023, 11: 109968

    Article  CAS  Google Scholar 

  172. Zan Z, Li X, Gao X, et al. 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-scheme heterojunction for robust photocatalytic degradation and H2O2 production. Acta Physico Chim Sin, 2022, 0: 2209016

    Article  Google Scholar 

  173. Li Z, Shen D, Hu X, et al. An S-scheme NH2-MIL-101(Fe)@MCN/Bi2O3 heterojunction photocatalyst for the degradation of tetracycline and production of H2O2. Chemosphere, 2023, 343: 140234

    Article  CAS  PubMed  ADS  Google Scholar 

  174. Zhang X, Yu J, Macyk W, et al. C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism. Adv Sustain Syst, 2023, 7: 2200113

    Article  CAS  Google Scholar 

  175. Li D, Liu Y, Xu D, et al. Construction of g-C3N4 nanotube/Ag3PO4 S-scheme heterojunction for enhanced photocatalytic oxygen generation. Ceramics Int, 2022, 48: 2169–2176

    Article  CAS  Google Scholar 

  176. Mousavi M, Bonakdar A, Parsaei-Khomami A, et al. Visible-light-driven g-C3N4/AgBiS2 S-scheme photocatalyst for N2 fixation and rhodamine B degradation. J Phys Chem Solids, 2023, 179: 111376

    Article  CAS  Google Scholar 

  177. Sayed M, Xu F, Kuang P, et al. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat Commun, 2021, 12: 4936

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  178. Wang L, Yu J. Photocatalytic phosphine-mediated water activation generates hydrogen atom radicals for transfer hydrogenation of closed-shell π systems. Sci China Mater, 2023, 66: 4133–4134

    Article  Google Scholar 

  179. Zhu B, Sun J, Zhao Y, et al. Construction of 2D S-scheme heterojunction photocatalyst. Adv Mater, 2023, 2310600

  180. Fang X, Tang Y, Ma YJ, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci China Mater, 2023, 66: 664–671

    Article  CAS  Google Scholar 

  181. Dong J, Gong Z, Chen Y, et al. Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst. Sci China Mater, 2023, 66: 3176–3188

    Article  CAS  Google Scholar 

  182. Wang Y, Si W, Tan H, et al. Integrated molten and vapor condensation of polymeric carbon nitride photoelectrode towards efficient water splitting. Sci China Mater, 2023, 66: 623–633

    Article  CAS  Google Scholar 

  183. Luo C, Long Q, Cheng B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded G-C3N4 and BiOCl for photocatalytic CO2 reduction. Acta Physico Chim Sin, 2023, 39: 2212026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22302061 and 22075072), Hubei Provincial Natural Science Foundation of China (2022CFC060), and the Research Project of Hubei Provincial Department of Education (Q20212502).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wu X provided the overall concept, and wrote and revised the manuscript; Tan L and Chen G prepared the figures and tables; Kang J downloaded and organized the literature; Wang G wrote and revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xinhe Wu  (吴新鹤) or Guohong Wang  (王国宏).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Xinhe Wu received his BS and MS degrees from Hubei Normal University and Wuhan University of Technology, respectively, and his PhD degree in materials science and engineering in 2021 from Wuhan University of Technology. In 2023, he became an associate professor at Hubei Normal University. Moreover, he was selected into the Chutian Scholars Talent Program of Hubei Province. His scientific interests are in semiconductor photocatalysis such as photocatalytic hydrogen production, CO2 reduction to hydrocarbon fuels, and the degradation of antibiotics.

Guohong Wang received his BS and MS degrees in chemical technology from East China University of Science and Technology and Wuhan University of Science and Technology, respectively, and his PhD degree in materials physics and chemistry in 2008 from Wuhan University of Technology. In 2013, he became a professor at Hubei Normal University. His current research interests include semiconductor photocatalysis, photocatalytic hydrogen production, and CO2 reduction to hydrocarbon fuels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Tan, L., Chen, G. et al. g-C3N4-based S-scheme heterojunction photocatalysts. Sci. China Mater. 67, 444–472 (2024). https://doi.org/10.1007/s40843-023-2755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2755-2

Keywords

Navigation