Skip to main content
Log in

TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation

用于能源转化和环境修复的TiO2 基梯型异质结光催 化剂

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Solar-driven semiconductor photocatalysis technology is deemed to be a potential strategy to alleviate environmental crisis and energy shortage. Thus, the exploration of high-efficiency photocatalysts is the key to promoting the development and practical application of photocatalysis technology. As a typical photocatalyst, TiO2 has gained extensive attention because of its superb stability, environmental-friendliness, and low price. However, the rapid photo-induced carrier recombination, inadequate light absorption, and insufficient reduction capacity are still the major drawbacks that significantly hamper its photocatalytic performance. Fortunately, the above shortcomings can concurrently overcome by constructing TiO2-based step-scheme (S-scheme) heterojunction photocatalysts with other semiconductors, during which the respective advantages can not only achieve significant spatial carrier separation and robust light-harvesting ability but also preserve the strong redox capacities. Herein, this review presents the latest development in improving the photocatalytic performance of TiO2via the S-scheme heterojunction. Specifically, the classification of TiO2-based S-scheme heterojunction photocatalysts has been detailly described, mainly including metal oxides, metal chalcogenides, organic semiconductors, and other semiconductors. Then, we summarize the current research progress of TiO2-based S-scheme heterojunction photocatalysts in photocatalytic H2 evolution, CO2 reduction, H2O2 production, and pollutant degradation. Simultaneously, various characterization strategies for understanding the photo-induced carrier transfer pathway are also reviewed. Finally, we propose several drawbacks and future prospects in the development of TiO2-based S-scheme heterojunction photocatalysts. It presents an insight into constructing high-efficiency TiO2-based S-scheme heterojunction photocatalysts for energy conversion and environmental remediation.

摘要

太阳能驱动的半导体光催化技术被认为是缓解能源短缺和环境污染的潜在策略. 因此, 探索高效的光催化剂是推动光催化技术发展和实际应用的关键. 作为一种典型的半导体光催化剂, TiO2 因其化学稳定、环境友好、成本低廉等特性而备受关注. 然而, TiO2 光生载流子的快速复合、光吸收范围窄以及还原能力不足等缺点严重阻碍了其光催化性能. 通过将TiO2 与其他半导体复合以构建梯型异质结可以有效的解决上述问题. 在此光催化体系中, 梯型异质结不仅可以整合各组分的优点, 实现光生载流子的有效分离和光捕获能力的增强, 而且还能保留最强的氧化还原能力. 基于此, 本文综述了利用构建梯型异质结来提高 TiO2 光催化性能的最新研究进展, 着重介绍了TiO2 基梯型异质结光催化剂的分类, 主要包括金属氧化物、金属硫属化物、有机半导体和其他类型半导体. 在此基础上, 本文还总结了TiO2 基梯型异质结光催化剂在析氢、CO2 还原、H2O2 生成和污染物降解等领域中的应用. 同时, 为了更好地理解光生载流子的转移途径, 本文还简要介绍了梯型异质结的一些表征方法. 最后, 对TiO2 基梯型异质结光催化剂所面临的问题和未来的发展方向进行了展望. 综上, 本文旨在为构建用于能源转换和环境修复的高效TiO2 基梯型异质结光催化剂提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu DF, Sun B, Bai SJ, et al. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic reproduction activity. Chin J Catal, 2023, 50: 273–283

    Article  CAS  Google Scholar 

  2. Bie CB, Yu HG, Cheng B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv Mater, 2021, 33: 2003521

    Article  CAS  Google Scholar 

  3. Wei Z, Wang WC, Li WL, et al. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew Chem Int Ed, 2021, 60: 8236–8242

    Article  CAS  Google Scholar 

  4. Jiang WB, Loh HY, Low BQL, et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Appl Catal B-Environ, 2023, 321: 122079

    Article  CAS  Google Scholar 

  5. Zhu QH, Xu Q, Du MM, et al. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv Mater, 2022, 34: 2202929

    Article  CAS  Google Scholar 

  6. Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev, 2022, 51: 1124–1138

    Article  CAS  PubMed  Google Scholar 

  7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Sun B, Zhou GW, Zhang Y, et al. Photocatalytic properties of exposed crystal surface-controlled rutile TiO2 nanorod assembled microspheres. Chem Eng J, 2015, 264: 125–133

    Article  CAS  Google Scholar 

  9. Qu JS, Wang YS, Mu XL, et al. Determination of crystallographic orientation and exposed facets of titanium oxide nanocrystals. Adv Mater, 2022, 34: 2203320

    Article  CAS  Google Scholar 

  10. Bayles A, Tian S, Zhou JY, et al. Al@TiO2 core-shell nanoparticles for plasmonic photocatalysis. ACS Nano, 2022, 16: 5839–5850

    Article  CAS  PubMed  Google Scholar 

  11. Balakrishnan A, Appunni S, Chinthala M, et al. Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: A review. Environ Chem Lett, 2022, 20: 3071–3098

    Article  CAS  Google Scholar 

  12. Dong GM, Zhang YW, Wang YY, et al. Ti3C2 quantum dots modified 3D/2D TiO2/g-C3N4 S-scheme heterostructures for highly efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater, 2021, 4: 14342–14351

    Article  CAS  Google Scholar 

  13. An XQ, Bian JY, Zhu K, et al. Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chem Eng J, 2022, 442: 135279

    Article  CAS  Google Scholar 

  14. Li HP, Sun B, Gao TT, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity ofmethyl orange degradation and hydrogen production. Chin J Catal, 2022, 43: 461–471

    Article  CAS  Google Scholar 

  15. Moradi M, Hasanvandian F, Isari AA, et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Appl Catal B-Environ, 2021, 285: 119838

    Article  CAS  Google Scholar 

  16. You HJ, Liu R, Liang CC, et al. Gold nanoparticle doped hollow SnO2 supersymmetric nanostructures for improved photocatalysis. J Mater Chem A, 2013, 1: 4097–4104

    Article  CAS  Google Scholar 

  17. Sun B, Zhou GW, Gao TT, et al. NiO nanosheet/TiO2 nanorod-constructed p-n heterostructures for improved photocatalytic activity. Appl Surf Sci, 2016, 364: 322–331

    Article  CAS  ADS  Google Scholar 

  18. Rawool SA, Pai MR, Banerjee AM, et al. pn Heterojunctions in NiO: TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation. Appl Catal B-Environ, 2018, 221: 443–458

    Article  CAS  Google Scholar 

  19. Zhu HL, Zhen C, Chen XT, et al. Patterning alternate TiO2 and Cu2O strips on a conductive substrate as film photocatalyst for Z-scheme photocatalytic water splitting. Sci Bull, 2022, 67: 2420–2427

    Article  CAS  Google Scholar 

  20. Chen L, Song XL, Ren JT, et al. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl Catal B-Environ, 2022, 315: 121546

    Article  CAS  Google Scholar 

  21. Alli YA, Oladoye PO, Matebese F, et al. Step-scheme photocatalysts: Promising hybrid nanomaterials for optimum conversion of CO2. Nano Today, 2023, 53: 102006

    Article  CAS  Google Scholar 

  22. Lu JN, Gu SN, Li HD, et al. Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. J Mater Sci Tech, 2023, 160: 214–239

    Article  Google Scholar 

  23. Xu QL, Zhang LY, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  24. Zhang LY, Zhang JJ, Yu HG, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  25. Cheng SW, Sun ZH, Lim KH, et al. Dual-defective two-dimensional/two-dimensional Z-scheme heterojunctions for CO2 reduction. ACS Catal, 2023, 13: 7221–7229

    Article  CAS  Google Scholar 

  26. Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater, 2006, 5: 782–786

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Xu QL, He RA, Li YJ. Problems and mistakes for electron transfer mechanism in Z-scheme photocatalytic system. Acta Phys-Chim Sin, 2023, 39: 2211009

    Google Scholar 

  28. Li YF, Xia ZL, Yang Q, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts. J Mater Sci Tech, 2022, 125: 128–144

    Article  CAS  Google Scholar 

  29. Fu JW, Xu QL, Low JX, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  30. Song MM, Song XH, Liu X, et al. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method. Chin J Catal, 2023, 51: 180–192

    Article  CAS  Google Scholar 

  31. Zhang YN, Xu MY, Zhou WQ, et al. Fabricated ZnO@ZnIn2S4 S-scheme heterojunction photocatalyst for enhanced electron-transfer and CO2 reduction. J Colloid Interface Sci, 2023, 650: 1762–1772

    Article  CAS  PubMed  Google Scholar 

  32. Zhao H, Wang LR, Liu GH, et al. Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catal, 2023, 13: 6619–6629

    Article  CAS  Google Scholar 

  33. Lu JN, Wang YN, Li HD, et al. Bi2MoSxO6−x/α-CoS crystalline/amorphous S-scheme heterojunction for visible light-driven targeted photo-decomposition of amoxicillin. Chem Eng J, 2023, 470: 144294

    Article  CAS  Google Scholar 

  34. Jiang ZC, Cheng B, Zhang LY, et al. A review on ZnO-based S-scheme heterojunction photocatalysts. Chin J Catal, 2023, 52: 32–49

    Article  CAS  Google Scholar 

  35. Wu XH, Chen GQ, Li LT, et al. ZnIn2S4-based S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2023, 167: 184–204

    Article  Google Scholar 

  36. Wang LX, Zhu BC, Zhang JJ, et al. S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  37. Zhu JJ, Wageh S, Al-Ghamdi AA. Using the femtosecond technique to study charge transfer dynamics. Chin J Catal, 2023, 49: 5–7

    Article  CAS  Google Scholar 

  38. Xu QL, Wageh S, Al-Ghamdi AA, et al. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2022, 124: 171–173

    Article  Google Scholar 

  39. Yang J, Xie TP, Mei YH, et al. High-efficiency V-mediated Bi2MoO6 photocatalyst for PMS activation: Modulation of energy band structure and enhancement of surface reaction. Appl Catal B-Environ, 2023, 339: 123149

    Article  CAS  Google Scholar 

  40. Xie C, Xu L, Peng JH, et al. Halogenated Ti3C2 MXenes prepared by microwave molten salt for Hg0 photo-oxidation. Adv Funct Mater, 2023, 33: 2213782

    Article  CAS  Google Scholar 

  41. Guo Q, Zhou CY, Ma ZB, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv Mater, 2019, 31: 1901997

    Article  CAS  Google Scholar 

  42. Liu LP, Liu XL, Chai YQ, et al. Surface modification of TiO2 nanosheets with fullerene and zinc-phthalocyanine for enhanced photocatalytic reduction under solar-light irradiation. Sci China Mater, 2020, 63: 2251–2260

    Article  CAS  Google Scholar 

  43. He F, Zhu BC, Cheng B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ, 2020, 272: 119006

    Article  CAS  Google Scholar 

  44. He BW, Wang ZL, Xiao P, et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv Mater, 2022, 34: 2203225

    Article  CAS  Google Scholar 

  45. Wang YL, He WJ, Xiong J, et al. MIL-68 (In)-derived Ini2O3@TiO2 S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels. Fuel, 2023, 331: 125719

    Article  CAS  Google Scholar 

  46. Yang Y, Cheng B, Yu JG, et al. TiO2/Ini2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res, 2023, 16: 4506–4514

    Article  CAS  ADS  Google Scholar 

  47. Zhang ML, Miao H, Fan J, et al. Internal electric field-modulated S-scheme Ni3Se4/TiO2 nanoparticle heterojunction for efficient photocatalytic H2 evolution. ACS Appl Nano Mater, 2023, 6: 18284–18294

    Article  CAS  Google Scholar 

  48. Wang LB, Cheng B, Zhang LY, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  49. Bi F, Su YT, Zhang YL, et al. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl Catal B-Environ, 2022, 306: 121109

    Article  CAS  Google Scholar 

  50. Yang Y, Liu JJ, Gu ML, et al. Bifunctional TiO2/COF S-scheme photocatalyst with enhanced H2O2 production and furoic acid synthesis mechanism. Appl Catal B-Environ, 2023, 333: 122780

    Article  CAS  Google Scholar 

  51. Zhu CZ, Yao HQ, Sun TY, et al. Ultrathin fluorine-doped TiO2(B) nanosheets-anchored hierarchical cog wheel-shaped NH2-MIL-53(Al) for boosting photocatalytic activity. Chem Eng J, 2023, 460: 141849

    Article  CAS  Google Scholar 

  52. Dong ZL, Zhang ZJ, Jiang Y, et al. Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem Eng J, 2022, 433: 133762

    Article  CAS  Google Scholar 

  53. Knezevic M, Hoang TH, Rashid N, et al. Recent development in metal halide perovskites synthesis to improve their charge-carrier mobility and photocatalytic efficiency. Sci China Mater, 2023, 66: 2545–2572

    Article  CAS  Google Scholar 

  54. Li QQ, Zhao WL, Zhai ZC, et al. 2D/2D Bi2MoO6/g-C3N S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J Mater Sci Tech, 2020, 56: 216–226

    Article  CAS  Google Scholar 

  55. Wang C, Jiao H, Yang YB, et al. Dual-functional S-scheme Fe3O4/TiO2/g-C3N4 double-heterostructure bridged by TiO2 for collaborative removal of U(VI) and Sb(III). J Cleaner Production, 2023, 426: 139114

    Article  CAS  Google Scholar 

  56. Liu HY, Sun F, Li XY, et al. g-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances. Compos Part B-Eng, 2023, 259: 110746

    Article  CAS  Google Scholar 

  57. Liu HX, Pan LK, Nie JL, et al. Bi12TiO20-TiO2 S-scheme heterojunction for improved photocatalytic NO removal: Experimental and DFT insights. Separ Purif Tech, 2023, 314: 123575

    Article  CAS  Google Scholar 

  58. Wang LX, Qiu JY, Wu N, et al. TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J Colloid Interface Sci, 2023, 629: 206–214

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Shao XL, Li K, Li JP, et al. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion. Chin J Catal, 2023, 51: 193–203

    Article  CAS  Google Scholar 

  60. Zhou L, Li YF, Yang SJ, et al. Preparation of novel 0D/2D Ag2WO4/WO3 step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chem Eng J, 2021, 420: 130361

    Article  CAS  Google Scholar 

  61. Wageh S, Al-Ghamdi AA, Xu QL. Core-shell Au@NiS1+x cocatalyst for excellent TiO2 photocatalytic H2 production. Acta Physico Chim Sin, 2022, 0: 2202001–0

    Article  Google Scholar 

  62. Xia PF, Cao SW, Zhu BC, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed, 2020, 59: 5218–5225

    Article  CAS  Google Scholar 

  63. Cheng C, Zhang JJ, Zhu BC, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  64. Kim KH, Kim SJ, Choi WH, et al. Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation. Adv Energy Mater, 2022, 12: 2104052

    Article  CAS  Google Scholar 

  65. Haque F, Daeneke T, Kalantar-zadeh K, et al. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett, 2018, 10: 1–27

    Article  Google Scholar 

  66. Yuan Y, Guo RT, Hong LF, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments. Mater Today Energy, 2021, 21: 100829

    Article  CAS  Google Scholar 

  67. Gao JS, Rao SS, Yu XH, et al. Dimensional-matched two dimensional/two dimensional TiO2/Bi2O3 step-scheme heterojunction for boosted photocatalytic performance of sterilization and water splitting. J Colloid Interface Sci, 2022, 628: 166–178

    Article  CAS  PubMed  Google Scholar 

  68. He F, Meng AY, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal, 2020, 41: 9–20

    Article  CAS  Google Scholar 

  69. Liu Y, Huang DL, Cheng M, et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord Chem Rev, 2020, 409: 213220

    Article  CAS  Google Scholar 

  70. Yin J, Jin J, Lin HH, et al. Optimized metal chalcogenides for boosting water splitting. Adv Sci, 2020, 7: 1903070

    Article  CAS  Google Scholar 

  71. Chen SS, Ma GJ, Wang Q, et al. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. J Mater Chem A, 2019, 7: 7415–7422

    Article  CAS  Google Scholar 

  72. Wang F, Huang FX, Yu FB, et al. Metal-sulfide photocatalysts for solar-fuel generation across the solar spectrum. Cell Rep Phys Sci, 2023, 4: 101450

    Article  CAS  Google Scholar 

  73. Zhu SC, Xiao FX. Transition metal chalcogenides quantum dots: Emerging building blocks toward solar-to-hydrogen conversion. ACS Catal, 2023, 13: 7269–7309

    Article  CAS  Google Scholar 

  74. Wang YC, Ren BY, Ou JZ, et al. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci Bull, 2021, 66: 1228–1252

    Article  CAS  Google Scholar 

  75. Wang JJ, Lin S, Tian N, et al. Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application. Adv Funct Mater, 2021, 31: 2008008

    Article  CAS  Google Scholar 

  76. Park H, Kim S, Kim T, et al. CoS@TiO2 S-scheme heterojunction photocatalyst for hydrogen production from photoinduced water splitting. J Cleaner Prod, 2021, 319: 128819

    Article  CAS  Google Scholar 

  77. Wang QY, Zhu SX, Zhao SZ, et al. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production. Fuel, 2022, 322: 124163

    Article  CAS  Google Scholar 

  78. Wang QP, Wang GH, Wang J, et al. In situ hydrothermal synthesis of ZnS/TiO2 nanofibers S-scheme heterojunction for enhanced photocatalytic H2 evolution. Adv Sustain Syst, 2023, 7: 2200027

    Article  CAS  Google Scholar 

  79. Zhang XD, Zeng YX, Shi WY, et al. S-scheme heterojunction of core-shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide. Chem Eng J, 2022, 429: 131312

    Article  CAS  Google Scholar 

  80. He BW, Xiao P, Wan SJ, et al. Rapid charge transfer endowed by interfacial Ni-O bonding in S-scheme heterojunction for efficient photocatalytic H2 and imine production. Angew Chem Int Ed, 2023, 62: e202313172

    Article  CAS  Google Scholar 

  81. Khamrai J, Das S, Savateev A, et al. Mizoroki-Heck type reactions and synthesis of 1, 4-dicarbonyl compounds by heterogeneous organic semiconductor photocatalysis. Green Chem, 2021, 23: 2017–2024

    Article  CAS  Google Scholar 

  82. Li YR, Wang ZW, Xia T, et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv Mater, 2016, 28: 6959–6965

    Article  CAS  PubMed  Google Scholar 

  83. Wang L, Huang W, Li R, et al. Structural design principle of small-molecule organic semiconductors for metal-free, visible-light-promoted photocatalysis. Angew Chem Int Ed, 2016, 55: 9783–9787

    Article  CAS  Google Scholar 

  84. Chen YZ, Yan CX, Dong JQ, et al. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv Funct Mater, 2021, 31: 2104099

    Article  CAS  Google Scholar 

  85. Liu SS, Wang MF, He YZ, et al. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev, 2023, 475: 214882

    Article  CAS  Google Scholar 

  86. Wang LB, Fei XG, Zhang LY, et al. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. J Mater Sci Tech, 2022, 112: 1–10

    Article  CAS  Google Scholar 

  87. Meng AY, Cheng B, Tan HY, et al. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl Catal B-Environ, 2021, 289: 120039

    Article  CAS  Google Scholar 

  88. Zhang BK, Wang DB, Jiao SJ, et al. TiO2−x mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chem Eng J, 2022, 446: 137138

    Article  CAS  Google Scholar 

  89. Zhao ZW, Ling Q, Li ZL, et al. S-scheme BaTiO3/TiO2 heterojunctions: Piezophotocatalytic degradation of norfloxacin. Separation Purification Tech, 2023, 308: 122928

    Article  CAS  Google Scholar 

  90. Wang KX, Luo ZG, Xiao B, et al. S-scheme Cu3P/TiO2 heterojunction for outstanding photocatalytic water splitting. J Colloid Interface Sci, 2023, 652: 1908–1916

    Article  CAS  PubMed  Google Scholar 

  91. Zhao LN, Bian J, Zhang XF, et al. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv Mater, 2022, 34: 2205303

    Article  CAS  Google Scholar 

  92. Liu BW, Cai JJ, Zhang JJ, et al. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study. Chin J Catal, 2023, 51: 204–215

    Article  Google Scholar 

  93. Zhang YF, Liu HX, Gao FX, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4: 100078

    Article  CAS  Google Scholar 

  94. Su B, Huang HW, Ding ZX, et al. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 124: 164–170

    Article  CAS  Google Scholar 

  95. Hao L, Huang HW, Zhang YH, et al. Oxygen vacant semiconductor photocatalysts. Adv Funct Mater, 2021, 31: 2100919

    Article  CAS  Google Scholar 

  96. Chen ZY, Huang NY, Xu Q. Metal halide perovskite materials in photocatalysis: Design strategies and applications. Coord Chem Rev, 2023, 481: 215031

    Article  CAS  Google Scholar 

  97. Weng CC, Ren JT, Yuan ZY. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: A critical review. ChemSusChem, 2020, 13: 3357–3375

    Article  CAS  PubMed  Google Scholar 

  98. Jaryal R, Kumar R, Khullar S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coord Chem Rev, 2022, 464: 214542

    Article  CAS  Google Scholar 

  99. Lei ZN, Cao XF, Fan J, et al. Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge. Chem Eng J, 2023, 457: 141249

    Article  CAS  ADS  Google Scholar 

  100. Wageh S, Al-Ghamdi AA, Al-Hartomy OA, et al. CdS/polymer S-scheme H2-production photocatalyst and its in situ irradiated electron transfer mechanism. Chin J Catal, 2022, 43: 586–588

    Article  CAS  Google Scholar 

  101. Shen RC, Ren DD, Ding YN, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci China Mater, 2020, 63: 2153–2188

    Article  CAS  Google Scholar 

  102. Wu XH, Chen GQ, Wang J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Physico Chim Sin, 2023, 0: 2212016

    Article  Google Scholar 

  103. Wan SJ, Xu JS, Cao SW, et al. Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscipl Mater, 2022, 1: 294–308

    Article  Google Scholar 

  104. Nishioka S, Osterloh FE, Wang XC, et al. Photocatalytic water splitting. Nat Rev Methods Primers, 2023, 3: 42

    Article  CAS  Google Scholar 

  105. Bie CB, Wang LX, Yu JG. Challenges for photocatalytic overall water splitting. Chem, 2022, 8: 1567–1574

    Article  CAS  Google Scholar 

  106. Wang LX, Yu JG. Photocatalytic phosphine-mediated water activation generates hydrogen atom radicals for transfer hydrogenation of closed-shell n systems. Sci China Mater, 2023, 66: 4133–4134

    Article  Google Scholar 

  107. Mehta A, Mishra A, Basu S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production: A review. J Environ Manage, 2019, 250: 109486

    Article  CAS  PubMed  Google Scholar 

  108. Li JM, Wu CC, Li J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chin J Catal, 2022, 43: 339–349

    Article  CAS  Google Scholar 

  109. Huang WQ, Xue WH, Hu XY, et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution. J Alloys Compd, 2023, 930: 167368

    Article  CAS  Google Scholar 

  110. Yang SY, Wang KL, Chen Q, et al. Enhanced photocatalytic hydrogen production of S-scheme TiO2/g-C3N4 heterojunction loaded with single-atom Ni. J Mater Sci Tech, 2024, 175: 104–114

    Article  Google Scholar 

  111. Zhang YP, Han W, Yang Y, et al. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced photocatalytic hydrogen evolution. Chem Eng J, 2022, 446: 137213

    Article  CAS  Google Scholar 

  112. Shaheer ARM, Vinesh V, Lakhera SK, et al. Reduced graphene oxide as a solid-state mediator in TiO2/In0.5WO3 S-scheme photocatalyst for hydrogen production. Sol Energy, 2021, 213: 260–270

    Article  CAS  ADS  Google Scholar 

  113. Bai X, Fu ZY, Ma XY, et al. Hydrophilic regulated photocatalytic converting phenol selectively over S-scheme CuWO4/TiO2. J Cleaner Production, 2022, 369: 133099

    Article  CAS  Google Scholar 

  114. Liu XJ, Chen TQ, Xue YH, et al. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord Chem Rev, 2022, 459: 214440

    Article  CAS  Google Scholar 

  115. Xia Y, Cheng B, Fan JJ, et al. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci China Mater, 2020, 63: 552–565

    Article  CAS  Google Scholar 

  116. Li DD, Kassymova M, Cai XC, et al. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev, 2020, 412: 213262

    Article  CAS  Google Scholar 

  117. Albero J, Peng Y, Garcia H. Photocatalytic CO2 reduction to C2+Products. ACS Catal, 2020, 10: 5734–5749

    Article  CAS  Google Scholar 

  118. Ouyang TW, Guo JQ, Shen HC, et al. The Z-scheme transfer of photogenerated electrons for CO2 photocatalytic reduction over g-ZnO/2H-MoS2 heterostructure. Nanoscale, 2021, 13: 18192–18200

    Article  CAS  PubMed  Google Scholar 

  119. Su B, Zheng M, Lin W, et al. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater, 2023, 13: 2203290

    Article  CAS  Google Scholar 

  120. Chen GJ, Zhou ZR, Li BF, et al. S-scheme heterojunction ofcrystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. J Environ Sci, 2023, doi: https://doi.org/10.1016/j.jes.2023.05.028

  121. Wang K, Cheng Q, Hou WD, et al. Unlocking the charge-migration mechanism in S-scheme junction for photoreduction of diluted CO2 with high selectivity. Adv Funct Mater, 2023, doi: https://doi.org/10.1002/adfm202309603

  122. Fang SY, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction. Nat Rev Methods Primers, 2023, 3: 61

    Article  CAS  Google Scholar 

  123. Xie F, Bie CB, Sun J, et al. A DFT study on Pt single atom loaded COF for efficient photocatalytic CO2 reduction. J Mater Sci Tech, 2024, 170: 87–94

    Article  Google Scholar 

  124. Hasija V, Kumar A, Sudhaik A, et al. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: A review. Environ Chem Lett, 2021, 19: 2941–2966

    Article  CAS  Google Scholar 

  125. Ren GM, Wei ZX, Li ZZ, et al. Fabrication of S-scheme hollow TiO2@Bi2MoO6 composite for efficiently photocatalytic CO2 reduction. Mater Today Chem, 2023, 27: 101260

    Article  CAS  Google Scholar 

  126. Hezam A, Alkanad K, Bajiri MA, et al. 2D/1D MoS2/TiO2 heterostructure photocatalyst with a switchable CO2 reduction product. Small Methods, 2023, 7: 2201103

    Article  CAS  Google Scholar 

  127. Liang SM, Chen YJ, Han W, et al. Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal-organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. J Colloid Interface Sci, 2023, 630: 11–22

    Article  CAS  PubMed  Google Scholar 

  128. Kim J, Kim JH, Oh C, et al. Electro-assisted methane oxidation to formic acid via in situ cathodically generated H2O2 under ambient conditions. Nat Commun, 2023, 14: 4704

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Wu Y, Yang Y, Gu ML, et al. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chin J Catal, 2023, 53: 123–133

    Article  CAS  Google Scholar 

  130. Zhu BC, Liu JJ, Sun J, et al. CdS decorated resorcinol-formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. J Mater Sci Tech, 2023, 162: 90–98

    Article  Google Scholar 

  131. Jiang ZC, Long Q, Cheng B, et al. 3D ordered macroporous sulfur-doped g-C3N4/TiO2 S-scheme photocatalysts for efficient H2O2 production in pure water. J Mater Sci Tech, 2023, 162: 1–10

    Article  Google Scholar 

  132. He RG, Xu DF, Li X. Floatable S-scheme photocatalyst for H2O2 production and organic synthesis. J Mater Sci Tech, 2023, 138: 256–258

    Article  CAS  Google Scholar 

  133. Zhao Y, Li XK, Fan X, et al. Small-molecule catalyzed H2O2 production via a phase-transfer photocatalytic process. Appl Catal B-Environ, 2022, 314: 121499

    Article  CAS  Google Scholar 

  134. Xia CH, Yuan L, Song H, et al. Spatial specific Janus S-scheme photocatalyst with enhanced H2O2 production performance. Small, 2023, 19: 2300292

    Article  CAS  Google Scholar 

  135. Zhang KY, Li YF, Yuan SD, et al. Review of S-scheme heterojunction photocatalyst for H2O2 production. Acta Physico Chim Sin, 2023, 39: 2212010

    Article  Google Scholar 

  136. Che HN, Gao X, Chen J, et al. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew Chem Int Ed, 2021, 60: 25546–25550

    Article  CAS  Google Scholar 

  137. Zhang HZ, Liu JJ, Zhang Y, et al. BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway. J Mater Sci Tech, 2023, 166: 241–249

    Article  Google Scholar 

  138. Wang K, Li JP, Liu XF, et al. Sacrificial-agent-free artificial photosynthesis of hydrogen peroxide over step-scheme WO3/NiS hybrid nanofibers. Appl Catal B-Environ, 2024, 342: 123349

    Article  CAS  Google Scholar 

  139. Sun B, Tao FR, Huang ZX, et al. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl Surf Sci, 2021, 535: 147354

    Article  CAS  Google Scholar 

  140. Wu YW, Zhong LL, Yuan JL, et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: A review. Environ Chem Lett, 2021, 19: 1335–1346

    Article  CAS  Google Scholar 

  141. Sun B, Dong XS, Li HP, et al. Surface charge engineering for two-dimensional Ti2CTx MXene for highly efficient and selective removal of cationic dye from aqueous solution. Separat Purif Tech, 2021, 272: 118964

    Article  CAS  Google Scholar 

  142. Zada A, Khan M, Khan MA, et al. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ Res, 2021, 195: 110742

    Article  CAS  PubMed  Google Scholar 

  143. Rasouli K, Rasouli J, Mohtaram MS, et al. Biomass-derived activated carbon nanocomposites for cleaner production: A review on aspects of photocatalytic pollutant degradation. J Cleaner Prod, 2023, 419: 138181

    Article  CAS  Google Scholar 

  144. Wang HH, Duan YH, Fei GQ, et al. Design, synthesis and modification of 2D nanomaterials-based photocatalysts for pollutant degradation and photodegradation experiments from lab-scale to grand-scale. Chem Eng J, 2023, 477: 147219

    Article  CAS  Google Scholar 

  145. Li CG, Tian Q, Zhang YL, et al. Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water Res, 2022, 210: 117985

    Article  CAS  PubMed  Google Scholar 

  146. Wang ZZ, Li Y, Cheng Q, et al. Sb-based photocatalysts for degradation of organic pollutants: A review. J Cleaner Prod, 2022, 367: 133060

    Article  CAS  Google Scholar 

  147. Wang J, Wang GH, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal, 2021, 42: 56–68

    Article  Google Scholar 

  148. He RG, Liu HJ, Liu HM, et al. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. J Mater Sci Tech, 2020, 52: 145–151

    Article  Google Scholar 

  149. Zhu CZ, Yao HQ, Le SK, et al. S-scheme photocatalysis induced by ultrathin TiO2(B) nanosheets-anchored hierarchical Ini2S3 spheres for boosted photocatalytic activity. Compos Part B-Eng, 2022, 242: 110082

    Article  CAS  Google Scholar 

  150. Li Z, Ai W, Zhang YH, et al. Magnetic carbon nanotube modified S-scheme TiO2-I/g-C3N4/CNFe heterojunction coupled with peroxymonosulfate for effective visible-light-driven photodegradation via enhanced interfacial charge separation. Separat Purif Tech, 2023, 308: 122897

    Article  CAS  Google Scholar 

  151. Tang RD, Gong DX, Deng YC, et al. n-n Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chem Eng J, 2022, 427: 131809

    Article  CAS  Google Scholar 

  152. Zhu YK, Zhuang Y, Wang LL, et al. Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution. Chin J Catal, 2022, 43: 2558–2568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52202102 and 51972180), the Natural Science Foundation of Shandong Province (ZR2019BB030 and ZR2020ME082), the Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province (2021KJ056), the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2023F13 and AMGM2021F05), the Undergraduate Training Program on Innovation and Entrepreneurship of Shandong Province (S202210431016) and the Science, Education and Industry Integration of Basic Research Projects of Qilu University of Technology (2023PY022).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Sun B and Zhou G proposed the theme and outline of the manuscript. Zhang B and Liu F collected the relevant information about the manuscript. Zhang B wrote the first draft. Sun B, Gao T, and Zhou G revised the manuscript. All authors discussed, commented, and supervised on the manuscript.

Corresponding authors

Correspondence to Bin Sun  (孙彬) or Guowei Zhou  (周国伟).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Baolong Zhang is pursuing a Master degree at the School of Chemistry and Chemical Engineering, Qilu University of Technology. His research focuses on the controllable preparation of S-scheme heterojunction photocatalysts and their applications to photocatalytic hydrogen evolution.

Bin Sun received his PhD degree in 2018 from the State Key Laboratory of Crystal Materials, Shandong University. Now he is an associate professor at the School of Chemistry and Chemical Engineering, Qilu University of Technology. His research interest is mainly focused on the controlled synthesis of low-dimensional nanostructured materials for energy conversion and environmental remediation applications.

Guowei Zhou received his BS, MS, and PhD degrees at Shandong University (1986, 1989 and 2001). He carried out postdoctoral research at Pukyong National University (2012-2013) and the Hong Kong University of Science and Technology (2015-2016). He is currently a Professor at Qilu University of Technology. His research interests include the controlled synthesis and hierarchical assembly mesostructure functional materials with specific morphology and the application of ordered mesoporous materials for catalysis, and energy conversion and storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Sun, B., Liu, F. et al. TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation. Sci. China Mater. 67, 424–443 (2024). https://doi.org/10.1007/s40843-023-2754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2754-8

Keywords

Navigation