Skip to main content
Log in

Recent progress and challenges in crystalline graphdiyne

晶体石墨炔的最新研究进展与挑战

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Graphynes (GYs), as a novel carbon allotrope, are composed of sp- and sp2-hybridized carbon atoms. Among them, graphdiyne (GDY) is the most widely studied and has received great attention. Its unique sp-hybridization, uniform pores, and highly conjugated structures, especially GDY with high crystallinity, bring excellent electronic, optic, and mechanical characteristics, making them extensively used in electronic devices, energy storage and conversion, catalysis, gas separation, seawater desalination, and so on. However, GDY materials still face challenges, including the synthesis of highly crystalline GDY and the rapid and non-destructive characterization methods. In this review, we primarily summarize the design, synthesis, and structural characterization of high-crystallinity GDY. Various applications are also described, which may bring new opportunities for highly uniform single-crystalline GDY materials.

摘要

石墨炔(GYs)是一种新型碳同素异形体, 由sp和sp2杂化碳原子组 成. 其中, 石墨双炔(GDY)是目前研究和关注度最广泛的材料. 其独特 的sp杂化、均匀的孔隙和高度共轭的结构带来了优良的电子、光学和 力学特性, 其被广泛应用于电子器件、储能和转换、催化、气体分 离、海水淡化等领域. 然而, GDY材料仍然面临着诸多挑战, 包括高结 晶GDY的合成和快速无损的表征方法. 本文就高结晶度GDY的设计、 合成和结构表征进行了综述. 本文还描述了GDY在各个领域的应用, 为高度均匀的单晶GDY材料带来新的机遇.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang RS, Jiang JW. The art of designing carbon allotropes. Front Phys, 2019, 14: 13401

    ADS  Google Scholar 

  2. Zhang J, Terrones M, Park CR, et al. Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98: 708–732

    CAS  Google Scholar 

  3. Robertson J. Diamond-like amorphous carbon. Mater Sci Eng-R-Rep, 2002, 37: 129–281

    Google Scholar 

  4. Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys, 1970, 53: 1126–1130

    ADS  CAS  Google Scholar 

  5. Ajayan PM, Lijima S. Smallest carbon nanotube. Nature, 1992, 358: 23

    ADS  Google Scholar 

  6. Geim AK, Novoselov KS. The rise and rise of graphene. Nat Nanotechnol, 2010, 5: 755

    Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    ADS  CAS  PubMed  Google Scholar 

  8. Kroto HW. The stability of the fullerenes Cn with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 1987, 329: 529–531

    ADS  CAS  Google Scholar 

  9. Baughman RH, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J Chem Phys, 1987, 87: 6687–6699

    ADS  CAS  Google Scholar 

  10. Narita N, Nagai S, Suzuki S, et al. Optimized geometries and electronic structures of graphyne and its family. Phys Rev B, 1998, 58: 11009–11014

    ADS  CAS  Google Scholar 

  11. Zhan SH, Zhao YS, Yang NL, et al. Pore structure of graphdiyne: Design, synthesis and application. Chem J Chinese U, 2021, 42: 333–348

    CAS  Google Scholar 

  12. Haley MM, Brand SC, Pak JJ. Carbon networks based on dehy-drobenzoannulenes: Synthesis of graphdiyne substructures. Angew Chem Int Ed Engl, 1997, 36: 836–838

    CAS  Google Scholar 

  13. Wan WB, Haley MM. Carbon networks based on dehy-drobenzoannulenes. 4. Synthesis of “star” and “trefoil” graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. J Org Chem, 2001, 66: 3893–3901

    CAS  PubMed  Google Scholar 

  14. Yan H, Yu P, Han G, et al. High-yield and damage-free exfoliation of layered graphdiyne in aqueous phase. Angew Chem Int Ed, 2019, 58: 746–750

    CAS  Google Scholar 

  15. Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films. Chem Commun, 2010, 46: 3256–3258

    ADS  CAS  Google Scholar 

  16. Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J Am Chem Soc, 2017, 139: 3145–3152

    CAS  PubMed  Google Scholar 

  17. Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv Mater, 2017, 29: 1604665

    Google Scholar 

  18. Zhao F, Li X, He J, et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem Eng J, 2021, 413: 127486

    CAS  Google Scholar 

  19. Zhan S, Chen X, Xu B, et al. Hollow multishelled structured graph-diyne realized radioactive water safe-discharging. Nano Today, 2022, 47: 101626

    CAS  Google Scholar 

  20. Hong X, Lu Y, Liang B. Progress in functionalized graphene and polymer/graphene composites. New Chem Mater, 2017, 45: 1–3

    ADS  Google Scholar 

  21. Kong HX. Hybrids of carbon nanotubes and graphene/graphene oxide. Curr Opin Solid State Mater Sci, 2013, 17: 31–37

    ADS  CAS  Google Scholar 

  22. Fu X, Zhu A, Chen X, et al. Stabilization of Cu/Ni alloy nanoparticles with graphdiyne enabling efficient CO2 reduction. Chem Res Chin Univ, 2021, 37: 1328–1333

    CAS  Google Scholar 

  23. Man Y, Zhao J, Liu S, et al. Heteroatom doped graphdiyne and analogues: Synthesis, structures and applications. Chem Res Chin Univ, 2021, 37: 1213–1223

    CAS  Google Scholar 

  24. Luan X, Xue Y. Nickel(hydro)oxide/graphdiyne catalysts for efficient oxygen production reaction. Chem Res Chin Univ, 2021, 37: 1268–1274

    CAS  Google Scholar 

  25. Diederich F, Kivala M. All-carbon scaffolds by rational design. Adv Mater, 2010, 22: 803–812

    CAS  PubMed  Google Scholar 

  26. Zhang Z, Wu C, Pan Q, et al. Interfacial synthesis of crystalline two-dimensional cyano-graphdiyne. Chem Commun, 2020, 56: 3210–3213

    CAS  Google Scholar 

  27. Yang Z, Shen X, Wang N, et al. Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion. ACS Appl Mater Interfaces, 2019, 11: 2608–2617

    CAS  PubMed  Google Scholar 

  28. Kan X, Ban Y, Wu C, et al. Interfacial synthesis of conjugated two-dimensional N-graphdiyne. ACS Appl Mater Interfaces, 2018, 10: 53–58

    CAS  PubMed  Google Scholar 

  29. Shang H, Zuo Z, Zheng H, et al. N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy, 2018, 44: 144–154

    CAS  Google Scholar 

  30. Zheng Z, He F, Xue Y, et al. Loading nickel atoms on GDY for efficient CO2 fixation and conversion. Chem Res Chin Univ, 2022, 38: 92–98

    CAS  Google Scholar 

  31. Zhou W, Shen H, Wu C, et al. Direct synthesis of crystalline graph-diyne analogue based on supramolecular interactions. J Am Chem Soc, 2019, 141: 48–52

    CAS  PubMed  Google Scholar 

  32. Jia B, Zhang B, Cai Z, et al. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. eScience, 2023, 3: 100112

    Google Scholar 

  33. Kong Y, Li J, Zeng S, et al. Bridging the gap between reality and ideality of graphdiyne: The advances of synthetic methodology. Chem, 2020, 6: 1933–1951

    CAS  Google Scholar 

  34. Zheng X, Chen S, Li J, et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research. ACS Nano, 2023, 17: 14309–14346

    CAS  PubMed  Google Scholar 

  35. Shen X, He J, Wang N, et al. Graphdiyne for electrochemical energy storage devices. Acta Physico-Chim Sin, 2018, 34: 1029–1047

    CAS  Google Scholar 

  36. Chang Q, Fu X, Gao J, et al. Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage. Adv Mater, 2023, 35: 2305317

    CAS  Google Scholar 

  37. Zhao Y, Chai L, Yan X, et al. Characteristics, properties, synthesis and advanced applications of 2D graphdiyne versus graphene. Mater Chem Front, 2022, 6: 528–552

    CAS  Google Scholar 

  38. Bu H, Zhao M, Zhang H, et al. Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification. J Phys Chem A, 2012, 116: 3934–3939

    CAS  PubMed  Google Scholar 

  39. Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano, 2011, 5: 2593–2600

    CAS  PubMed  Google Scholar 

  40. Zhang S, Wang J, Li Z, et al. Raman spectra and corresponding strain effects in graphyne and graphdiyne. J Phys Chem C, 2016, 120: 10605–10613

    CAS  Google Scholar 

  41. Xia J, Wang X, Tay BK, et al. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res, 2017, 10: 1618–1626

    CAS  Google Scholar 

  42. Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res, 2016, 9: 3559–3597

    CAS  Google Scholar 

  43. Luo G, Zheng Q, Mei WN, et al. Structural, electronic, and optical properties of bulk graphdiyne. J Phys Chem C, 2013, 117: 13072–13079

    CAS  Google Scholar 

  44. Li C, Lu X, Han Y, et al. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res, 2018, 11: 1714–1721

    CAS  Google Scholar 

  45. Gao J, Yan X, Huang C, et al. Boosting Fe cationic vacancies with graphdiyne to enhance exceptional pseudocapacitive lithium intercalation. Angew Chem Int Ed, 2023, 62: e202307874

    CAS  Google Scholar 

  46. Wei H, Shi R, Sun L, et al. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat Commun, 2021, 12: 1068

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang ZC, Li Y, Wang JJ, et al. Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Res, 2021, 14: 4591–4600

    ADS  CAS  Google Scholar 

  48. Li L, Qiao W, Bai H, et al. Structural and electronic properties of α-, β-, γ-, and 6,6,18-graphdiyne sheets and nanotubes. RSC Adv, 2020, 10: 16709–16717

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xi J, Long M, Tang L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4: 4348–4369

    ADS  CAS  PubMed  Google Scholar 

  50. Enyashin AN, Ivanovskii AL. Graphene allotropes. Physica Status Solidi (b), 2011, 248: 1879–1883

    ADS  CAS  Google Scholar 

  51. Malko D, Neiss C, Vines F, et al. Competition for graphene: Graphynes with direction-dependent dirac cones. Phys Rev Lett, 2012, 108: 086804

    ADS  PubMed  Google Scholar 

  52. Jiao Y, Du A, Hankel M, et al. Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification. Chem Commun, 2011, 47: 11843–11845

    CAS  Google Scholar 

  53. Srinivasu K, Ghosh SK. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications. J Phys Chem C, 2012, 116: 5951–5956

    CAS  Google Scholar 

  54. Zheng Q, Luo G, Liu Q, et al. Structural and electronic properties of bilayer and trilayer graphdiyne. Nanoscale, 2012, 4: 3990–3996

    ADS  CAS  PubMed  Google Scholar 

  55. Yue Q, Chang S, Kang J, et al. Magnetic and electronic properties of α-graphyne nanoribbons. J Chem Phys, 2012, 136: 244702

    ADS  PubMed  Google Scholar 

  56. Gong P, Li J, Wang J, et al. Controlled growing of graphdiyne film for friction reduction and antiwear. ACS Nano, 2023, 17: 8252–8261

    CAS  PubMed  Google Scholar 

  57. Lin L, Pan H, Chen Y, et al. Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine. Carbon, 2019, 143: 8–13

    CAS  Google Scholar 

  58. Zhang D, Yang Z, Liu W, et al. The preparation of whole sp-C composed alkyne rich carbon materials. Nano Res, 2023, 16: 12618–12625

    ADS  CAS  Google Scholar 

  59. Shang H, Zuo Z, Li L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes. Angew Chem Int Ed, 2018, 57: 774–778

    CAS  Google Scholar 

  60. Li J, Chen Y, Gao J, et al. Graphdiyne sponge for direct collection of oils from water. ACS Appl Mater Interfaces, 2019, 11: 2591–2598

    CAS  PubMed  Google Scholar 

  61. Su K, Dong GX, Zhang W, et al. In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction. ACS Appl Mater Interfaces, 2020, 12: 50464–50471

    CAS  PubMed  Google Scholar 

  62. Gao X, Liu H, Wang D, et al. Graphdiyne: Synthesis, properties, and applications. Chem Soc Rev, 2019, 48: 908–936

    CAS  PubMed  Google Scholar 

  63. Sakamoto J, van Heijst J, Lukin O, et al. Two-dimensional polymers: Just a dream of synthetic chemists? Angew Chem Int Ed, 2009, 48: 1030–1069

  64. Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: Chemistry and biology. Angew Chem Int Ed, 2014, 53: 956–987

    CAS  Google Scholar 

  65. Colson JW, Woll AR, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science, 2011, 332: 228–231

    ADS  CAS  PubMed  Google Scholar 

  66. Sun QH, Lu TT, He JJ, et al. Advances in the study of heteratomic graphdiyne electrode materials. Chem J Chinese U, 2021, 42: 366–379

    CAS  Google Scholar 

  67. Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J Am Chem Soc, 2015, 137: 7596–7599

    CAS  PubMed  Google Scholar 

  68. Wang S, Yi L, Halpert JE, et al. A novel and highly efficient photo-catalyst based on P25-graphdiyne nanocomposite. Small, 2012, 8: 265–271

    CAS  PubMed  Google Scholar 

  69. Gao X, Li J, Du R, et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv Mater, 2017, 29: 1605308

    Google Scholar 

  70. Hu G, He J, Li Y. Controllable synthesis of two-dimensional graph-diyne films catalyzed by a copper(II) trichloro complex. ACS Catal, 2022, 12: 6712–6721

    CAS  Google Scholar 

  71. Hui L, Xue Y, Jia D, et al. Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv Energy Mater, 2018, 8: 1800175

    Google Scholar 

  72. Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun, 2018, 9: 1460

    ADS  PubMed  PubMed Central  Google Scholar 

  73. Hui L, Xue Y, Yu H, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J Am Chem Soc, 2019, 141: 10677–10683

    CAS  PubMed  Google Scholar 

  74. Wong HH, Sun M, Huang B. Synergistic effect of graphdiyne-based electrocatalysts. Chem Res Chin Univ, 2021, 37: 1242–1256

    CAS  Google Scholar 

  75. Gao J, Li J, Chen Y, et al. Architecture and properties of a novel two-dimensional carbon material-graphtetrayne. Nano Energy, 2018, 43: 192–199

    CAS  Google Scholar 

  76. Zhou WX, Chen KQ. Enhancement of thermoelectric performance in β-graphyne nanoribbons by suppressing phononic thermal conductance. Carbon, 2015, 85: 24–27

    CAS  Google Scholar 

  77. Li J, Xie Z, Xiong Y, et al. Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv Mater, 2017, 29: 1700421

    Google Scholar 

  78. Kim K, Santos EJG, Lee TH, et al. Epitaxially grown strained pentacene thin film on graphene membrane. Small, 2015, 11: 2037–2043

    CAS  PubMed  Google Scholar 

  79. Li J, Xiong Y, Xie Z, et al. Template synthesis of an ultrathin β-graphdiyne-like film using the eglinton coupling reaction. ACS Appl Mater Interfaces, 2019, 11: 2734–2739

    CAS  PubMed  Google Scholar 

  80. Dai W, Shao F, Szczerbiriski J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew Chem Int Ed, 2016, 55: 213–217

    CAS  Google Scholar 

  81. Cirera B, Zhang Y, Klyatskaya S, et al. 2D self-assembly and catalytic homo-coupling of the terminal alkyne 1,4-bis(3,5-diethynyl-phenyl)-butadiyne-1,3 on Ag(111). ChemCatChem, 2013, 5: 3281–3288

    CAS  Google Scholar 

  82. Sakamoto R, Hoshiko K, Liu Q, et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun, 2015, 6: 6713

    ADS  CAS  PubMed  Google Scholar 

  83. Dey K, Pal M, Rout KC, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J Am Chem Soc, 2017, 139: 13083–13091

    CAS  PubMed  Google Scholar 

  84. Matsuoka R, Toyoda R, Shiotsuki R, et al. Expansion of the graph-diyne family: A triphenylene-cored analogue. ACS Appl Mater Interfaces, 2019, 11: 2730–2733

    CAS  PubMed  Google Scholar 

  85. Kan X, Wang D, Pan Q, et al. Confined interfacial synthesis of highly crystalline and ultrathin graphdiyne films and their applications for N2 fixation. Chem Eur J, 2020, 26: 7801–7807

    CAS  PubMed  Google Scholar 

  86. Kong Y, Li X, Wang L, et al. Rapid synthesis of graphdiyne films on hydrogel at the superspreading interface for antibacteria. ACS Nano, 2022, 16: 11338–11345

    CAS  PubMed  Google Scholar 

  87. Pan Q, Chen X, Li H, et al. Preparation of crystalline benzo-trithiophene-based two-dimensional graphdiyne analogue. 2D Mater, 2021, 9: 014001

    Google Scholar 

  88. Kulkarni R, Huang J, Trunk M, et al. Direct growth of crystalline triazine-based graphdiyne using surface-assisted deprotection-poly-merisation. Chem Sci, 2021, 12: 12661–12666

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pan Q, Chen X, Liu H, et al. Crystalline porphyrin-based graphdiyne for electrochemical hydrogen and oxygen evolution reactions. Mater Chem Front, 2021, 5: 4596–4603

    CAS  Google Scholar 

  90. Li XH, Li XD, Sun QH, et al. Synthesis and applications of graphdiyne derivatives. Acta Phys-Chim Sin, 2023, 39: 1029–1047

    Google Scholar 

  91. Pan Q, Chen S, Wu C, et al. Sulfur-rich graphdiyne-containing electrochemical active tetrathiafulvalene for highly efficient lithium storage application. ACS Appl Mater Interfaces, 2019, 11: 46070–46076

    CAS  PubMed  Google Scholar 

  92. Li J, Xu J, Xie Z, et al. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv Mater, 2018, 30: 1800548

    Google Scholar 

  93. Lu X, Cai M, Wu X, et al. Controllable synthesis of 2D materials by electrochemical exfoliation for energy storage and conversion application. Small, 2022, 19: 2206702

    Google Scholar 

  94. Hui L, Xue Y, Huang B, et al. Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nat Commun, 2018, 9: 5309

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Parvin N, Jin Q, Wei Y, et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv Mater, 2017, 29: 1606755

    Google Scholar 

  96. Yan H, Yu P, Han G, et al. High-yield and damage-free exfoliation of layered graphdiyne in aqueous phase. Angew Chem Int Ed, 2019, 58: 746–750

    CAS  Google Scholar 

  97. Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466: 470–473

    ADS  CAS  PubMed  Google Scholar 

  98. Grill L, Dyer M, Lafferentz L, et al. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotech, 2007, 2: 687–691

    ADS  CAS  Google Scholar 

  99. Yin C, Li J, Li T, et al. Catalyst-free synthesis of few-layer graphdiyne using a microwave-induced temperature gradient at a solid/liquid interface. Adv Funct Mater, 2020, 30: 2001396

    CAS  Google Scholar 

  100. Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis offew-layered graphdiyne. Adv Mater, 2019, 31: 1803758

    CAS  Google Scholar 

  101. Gao X, Ren H, Zhou J, et al. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem Mater, 2017, 29: 5777–5781

    CAS  Google Scholar 

  102. Zheng Y, Chen Y, Lin L, et al. Intrinsic magnetism of graphdiyne. Appl Phys Lett, 2017, 111: 033101

    ADS  Google Scholar 

  103. Ding W, Sun M, Zhang Z, et al. Ultrasound-promoted synthesis of γ-graphyne for supercapacitor and photoelectrochemical applications. Ultrasons SonoChem, 2020, 61: 104850

    CAS  Google Scholar 

  104. Wang K, Wang N, He J, et al. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl Mater Interfaces, 2017, 9: 40604–40613

    CAS  PubMed  Google Scholar 

  105. Zhang L, Wu Y, Li J, et al. Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Mater Today Phys, 2022, 27: 100767

    CAS  Google Scholar 

  106. Qian X, Ning Z, Li Y, et al. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans, 2012, 41: 730–733

    CAS  PubMed  Google Scholar 

  107. Si HY, Mao CJ, Zhou JY, et al. Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne. Carbon, 2018, 132: 598–605

    CAS  Google Scholar 

  108. Jia Z, Zuo Z, Yi Y, et al. Low temperature, atmospheric pressure for synthesis of a new carbon Eneyne and application in Li storage. Nano Energy, 2017, 33: 343–349

    ADS  CAS  Google Scholar 

  109. Yang Z, Song Y, Zhang C, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions. Adv Energy Mater, 2021, 11: 2101197

    ADS  CAS  Google Scholar 

  110. Navarro R, Burillo G, Adem E, et al. Effect of ionizing radiation on the chemical structure and the physical properties of polycaprolactones of different molecular weight. Polymers, 2018, 10: 397

    PubMed  PubMed Central  Google Scholar 

  111. Wang J, Zhang S, Zhou J, et al. Identifying sp-sp2 carbon materials by Raman and infrared spectroscopies. Phys Chem Chem Phys, 2014, 16: 11303–11309

    CAS  PubMed  Google Scholar 

  112. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-hetero-junction solar cells. Adv Mater, 2009, 21: 1323–1338

    CAS  Google Scholar 

  113. Saeidi M, Vaezzadeh M. Carbon nanotube growth on catalyst. CNANO, 2009, 5: 302–305

    ADS  CAS  Google Scholar 

  114. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    ADS  CAS  PubMed  Google Scholar 

  115. Li L, Zuo Z, He F, et al. Nitrogen-rich graphdiyne film for efficiently suppressing the methanol crossover in direct methanol fuel cells. Chem Res Chin Univ, 2021, 37: 1275–1282

    Google Scholar 

  116. Wu T, Sun M, Huang B. Graphdiyne based catalysts for energy applications. Mater Chem Front, 2021, 5: 7369–7383

    CAS  Google Scholar 

  117. Liu B, Xu L, Zhao Y, et al. Heteroatoms in graphdiyne for catalytic and energy-related applications. J Mater Chem A, 2021, 9: 19298–19316

    CAS  Google Scholar 

  118. Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem, 2018, 10: 924–931

    CAS  PubMed  Google Scholar 

  119. Zhao Y, Yang N, Yao H, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J Am Chem Soc, 2019, 141: 7240–7244

    CAS  PubMed  Google Scholar 

  120. Ren H, Shao H, Zhang L, et al. A new graphdiyne nanosheet/Pt na-noparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv Energy Mater, 2015, 5: 1500296

    Google Scholar 

  121. Cui W, Zhang M, Wang N, et al. High-performance field-effect transistor based on novel conjugated p-o-fluoro-p-alkoxyphenyl-sub-stituted polymers by graphdiyne doping. J Phys Chem C, 2017, 121: 23300–23306

    CAS  Google Scholar 

  122. Qi Q, Xu L, Du J, et al. Fabrication and application of graphdiyne-based heterogeneous compositions: from the view of interaction. Chem Res Chin Univ, 2021, 37: 1158–1175

    CAS  Google Scholar 

  123. Wang J, Wang K, Yang Z, et al. Effective stabilization of long-cycle lithium-sulfur batteries utilizing in situ prepared graphdiyne-modu-lated separators. ACS Sustain Chem Eng, 2019, 8: 1741–1750

    Google Scholar 

  124. Feng W, Long P, Feng Y, et al. Two-dimensional fluorinated gra-phene: Synthesis, structures, properties and applications. Adv Sci, 2016, 3: 1500413

    Google Scholar 

  125. Zhang L, Liu J, Bai L, et al. Diffusion kinetics study of lithium ion in the graphdiyne based electrode. Chem Res Chin Univ, 2021, 37: 12891295

    Google Scholar 

  126. Berger R, Resnati G, Metrangolo P, et al. Organic fluorine compounds: A great opportunity for enhanced materials properties. Chem Soc Rev, 2011, 40: 3496–3508

    CAS  PubMed  Google Scholar 

  127. Nakajima T. Fluorine compounds as energy conversion materials. J Fluorine Chem, 2013, 149: 104–111

    CAS  Google Scholar 

  128. Li J, Chen Y, Wang F, et al. Graphdiyne hybrid nanowall arrays for high-capacity aqueous rechargeable zinc ion battery. Chem Res Chin Univ, 2021, 37: 1301–1308

    CAS  Google Scholar 

  129. He J, Wang N, Yang Z, et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy Environ Sci, 2018, 11: 2893–2903

    CAS  Google Scholar 

  130. Wang N, Li X, Tu Z, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew Chem Int Ed, 2018, 57: 3968–3973

    ADS  CAS  Google Scholar 

  131. Muhammad I, Wang S, Liu J, et al. Boron-graphdiyne as an anode material for Li, Na, and K ion batteries with high capacities and low diffusion barriers. J Renew Sustain Energy, 2019, 11: 014106

    Google Scholar 

  132. Muhammad I, Younis U, Xie H, et al. Graphdiyne-based monolayers as promising anchoring materials for lithium-sulfur batteries: A theoretical study. Advcd Theor Sims, 2020, 3: 1900236

    CAS  Google Scholar 

  133. Muhammad I, Younis U, Wu W, et al. Three-dimensional porous phosphorus-graphdiyne as a universal anode material for both K- and Ca-ion batteries with high performance. J Power Sources, 2020, 480: 228876

    CAS  Google Scholar 

  134. Zhang L, Li J, Yi W, et al. Synthesis ofgraphdiyne hollow spheres and multiwalled nanotubes and applications in water purification and Raman sensing. Nano Lett, 2023, 23: 3023–3029

    ADS  CAS  PubMed  Google Scholar 

  135. Zheng F, Chen Z, Li J, et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci, 2022, 9: 2105231

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0703504 and 2022YFA1204502) and the National Natural Science Foundation of China (51932001, 52201284, and 52174387).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang D supervised the project and conceived the idea. Liu X wrote the draft. Zhao Y revised the manuscript. Du J provided constructive suggestions. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Yasong Zhao  (赵亚松), Jiang Du  (杜江) or Dan Wang  (王丹).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xinkang Liu received his BS degree from Taiyuan University of Technology. He is currently studying at Zhengzhou University under the supervision of Prof. Jiang Du. His research interests include the synthesis and catalytic properties of graphdiyne.

Yasong Zhao received her PhD degree from the Department of Chemistry and Chemical Engineering, Harbin Institute of Technology in 2019. She is currently an assistant researcher at the Institute of Process Engineering, Chinese Academy of Sciences. Her research involves the design and synthesis of 2D materials for energy conversion and catalytic applications.

Jiang Du received his BS degree from Nankai University, and then obtained his PhD degree from the University of Chinese Academy of Sciences in 2012 under the supervision of Prof. Dan Wang. Then he joined Professor Brian A. Korgel’s group at the University of Texas in Austin. His research interests include the synthesis and properties of nanowires and 2D nanomaterials. He started working at Zhengzhou University in 2018 as an associate professor.

Prof. Dan Wang received his BS and MS degrees from Jilin University (1994 and 1997) and his PhD degree from Yamanashi University (2001). In 2004, he began his position as a Principal Investigator at the Institute of Process Engineering, Chinese Academy of Sciences. His research interests include inorganic materials chemistry, surface and colloidal chemistry, and hydrothermal chemistry, with a focus on multishelled hollow micro/nanostructured materials and their applications in energy conversion and storage, photocatalysis, sensors, and drug delivery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, Y., Du, J. et al. Recent progress and challenges in crystalline graphdiyne. Sci. China Mater. 67, 729–751 (2024). https://doi.org/10.1007/s40843-023-2735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2735-6

Keywords

Navigation