Skip to main content
Log in

In2O3/Bi19Br3S27 S-scheme heterojunction with enhanced photocatalytic CO2 reduction

In2O3/Bi19Br3S27S型异质结增强光催化CO2还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In recent years, semiconductor catalysts have attracted lots of attention due to their substantial redox capability and adequate stability. However, many semiconductor catalysts have difficulties in realizing real word applications because of the high complexation and low oxidizing ability of photogenerated electron-holes. In-depth investigation has revealed that the S-scheme heterojunction possesses a unique mechanism of carrier movement, resulting in a robust redox capacity and strong driving force. Herein, we synthesized an In2O3/Bi19Br3S27 step-scheme (S-scheme) heterojunction through the hydrothermal method comprised of Bi19Br3S27 nanoflowers grown on In2O3 nanospheres. This configuration effectively facilitates the separation and transfer of photogenerated charge carriers. As a result, the reduction yield of CO2 by In2O3/Bi19Br3S27 composite reaches 28.36 µmol h1 g1, which is 19 times higher than that of In2O3 and 3.5 times higher than that of Bi19Br3S27. Furthermore, the intermediates involved in the photocatalytic reaction were examined through in situ diffuse reflectance infrared Fourier transform spectroscopy, revealing the reaction process of photocatalytic reduction of CO2. This work offers a concept on the method of constructing S-scheme heterojunction photocatalysts to enhance the catalyzed reduction of CO2.

摘要

近年来, 半导体催化剂因其较强的氧化还原能力和较好的稳定性而受到广泛关注. 然而, 光生电子和空穴对易复合和低氧化性导致单一半导体催化剂难以实现实际应用. 深入研究表明, S型异质结具有独特的电子和空穴分离机理、强大的氧化还原能力和较强的载流子分离驱动力. 本研究以在In2O3纳米球上生长的Bi19Br3S27纳米花为原料, 采用水热法合成了In2O3/Bi19Br3S27梯形异质结. 这种梯形异质结有效地促进了光生电荷载流子的分离和转移. 结果表明, In2O3/Bi19Br3S27复合材料对CO2的还原产率高达28.36 μmol h−1g−1, 分别是In2O3和Bi19Br3S27的19和3.5倍. 此外, 通过原位漫反射红外傅里叶变换光谱对参与光催化反应的中间体进行了研究, 揭示了光催化还原CO2的反应过程. 本工作为构建S型异质结光催化剂增强CO2催化还原的方法提供了较好的研究思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bie C, Wang L, Yu J. Challenges for photocatalytic overall water splitting. Chem, 2022, 8: 1567–1574

    Article  CAS  Google Scholar 

  2. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  3. Li N, Peng J, Shi Z, et al. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CT-MXenes for highly selective CO2 electrochemical reduction. Chin J Catal, 2022, 43: 1906–1917

    Article  CAS  Google Scholar 

  4. Ban C, Duan Y, Wang Y, et al. Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett, 2022, 14: 74

    Article  CAS  ADS  Google Scholar 

  5. Luo C, Long Q, Cheng B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded g-C3N4 and BiOCl for photocatalytic CO2 reduction. Acta Phys Chim Sin, 2023, 39: 2212026

    Article  Google Scholar 

  6. Fu J, Jiang K, Qiu X, et al. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today, 2020, 32: 222–243

    Article  CAS  Google Scholar 

  7. Qin Y, Zhan G, Tang C, et al. Homogeneous vacancies-enhanced orbital hybridization for selective and efficient CO2-to-CO electrocatalysis. Nano Lett, 2023, 23: 9227–9234

    Article  PubMed  ADS  Google Scholar 

  8. Fu J, Liu K, Jiang K, et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv Sci, 2019, 6: 1900796

    Article  CAS  Google Scholar 

  9. Luo W, Li A, Yang B, et al. Synthesis of a hexagonal phase ZnS photocatalyst for high CO selectivity in CO2 reduction reactions. ACS Appl Mater Interfaces, 2023, 15: 15387–15395

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Liu Y, Wang Q, et al. Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products. Appl Catal B-Environ, 2022, 316: 121616

    Article  CAS  Google Scholar 

  11. Yang Y, Wu J, Cheng B, et al. Enhanced photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chin J Struct Chem, 2022, 41: 2206006

    CAS  Google Scholar 

  12. Yang C, Wan S, Zhu B, et al. Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water. Angew Chem Int Ed, 2022, 61: e202208438

    Article  CAS  ADS  Google Scholar 

  13. Wang L, Yu J. Photocatalytic phosphine-mediated water activation generates hydrogen atom radicals for transfer hydrogenation of closed-shell π systems. Sci China Mater, 2023, 66: 4133–4134

    Article  Google Scholar 

  14. Zhang J, Fu J, Dai K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J Mater Sci Tech, 2022, 116: 192–198

    Article  CAS  Google Scholar 

  15. Bai J, Shen R, Jiang Z, et al. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin J Catal, 2022, 43: 359–369

    Article  CAS  Google Scholar 

  16. Liu L, Dai K, Zhang J, et al. Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J Colloid Interface Sci, 2021, 604: 844–855

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Zhao L, Bian J, Zhang X, et al. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv Mater, 2022, 34: 2205303

    Article  CAS  Google Scholar 

  18. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Shen R, Ren D, Ding Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci China Mater, 2020, 63: 2153–2188

    Article  CAS  Google Scholar 

  20. Liu T, Li Y, Sun H, et al. Asymmetric structure awakened n−π* electron transition in sulfur and selenium co-doped g-C3N4 with efficient photocatalytic performance. Chin J Struct Chem, 2022, 41: 2206055–2206061

    CAS  Google Scholar 

  21. Li X, Luo Q, Han L, et al. Enhanced photocatalytic degradation and H2 evolution performance of N CDs/S-C3N4 S-scheme heterojunction constructed by π−π conjugate self-assembly. J Mater Sci Tech, 2022, 114: 222–232

    Article  CAS  Google Scholar 

  22. Jiang Y, Li S, Wang S, et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J Am Chem Soc, 2023, 145: 2698–2707

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J, Xiong Z, Wang H, et al. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Tech, 2022, 118: 15–24

    Article  CAS  Google Scholar 

  24. Xue X, Lu C, Luo M, et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting. Sci China Mater, 2022, 66: 127–138

    Article  Google Scholar 

  25. Mei F, Zhang J, Liang C, et al. Fabrication of novel CoO/porous graphitic carbon nitride S-scheme heterojunction for efficient CO2 photoreduction. Mater Lett, 2021, 282: 128722

    Article  CAS  Google Scholar 

  26. Li X, Wang C, Yang J, et al. PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors. Nat Commun, 2023, 14: 6343

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Zhang Y, Qiu W, Liu Y, et al. Modulating the Cu2O photoelectrode/electrolyte interface with bilayer surfactant simulating cell membranes for boosting photoelectrochemical CO2 reduction. J Phys Chem Lett, 2023, 14: 6301–6308

    Article  CAS  PubMed  Google Scholar 

  28. Bai J, Chen W, Shen R, et al. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. J Mater Sci Tech, 2022, 112: 85–95

    Article  CAS  Google Scholar 

  29. Shen R, Hao L, Chen Q, et al. P-doped g-C3N4 nanosheets with highly dispersed Co0.2Ni1.6Fe0.2P cocatalyst for efficient photocatalytic hydrogen evolution. Acta Phys Chim Sin, 2022, 38: 2110014

    Google Scholar 

  30. Zhang Y, Di J, Zhu X, et al. Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation Appl Catal B-Environ, 2023, 323: 122148

    Article  CAS  Google Scholar 

  31. Zhang H, Wang Z, Zhang J, et al. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization Chin J Catal, 2023, 49: 42–67

    Article  CAS  Google Scholar 

  32. Lv HJ, Ul Hassan Q, Fan SC, et al. Ultrafine Pd nanoparticles anchored on hierarchically porous titanium-based MOFs for superior photothermal CO2 reduction Sci China Mater, 2023, 66: 2317–2328

    Article  CAS  Google Scholar 

  33. Zhang K, Li Y, Yuan S, et al. Review of S-scheme heterojunction photocatalyst for H2O2 production Acta Phys Chim Sin, 2023, 39: 2212010

    Article  Google Scholar 

  34. Phan PDM, Nguyen DV, Anh NH, et al. S-scheme heterostructured CdS/g-C3N4 nanocatalysts for piezo-photocatalytic synthesis of H2O2. ACS Appl Nano Mater, 2023, 6: 16702–16715

    Article  CAS  Google Scholar 

  35. Zhang T, Zhao X, Lin M, et al. Surfactant-free synthesis of ordered 1D/2D NiZn-LDH heterostructure through oriented attachment for efficient photocatalytic CO2 reduction with nearly 100% CO selectivity. Sci China Mater, 2023, 66: 2308–2316

    Article  CAS  Google Scholar 

  36. Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun, 2020, 11: 4613

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Wang L, Bie C, Yu J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem, 2022, 4: 973–983

    Article  CAS  Google Scholar 

  38. Fan Y, Zhang Z, Wang J, et al. Direct Z-scheme photocatalytic nitrogen reduction to ammonia with water in metal-free BC4N/aza-CMP heterobilayer. Sci China Mater, 2023, 66: 4377–4386

    Article  CAS  Google Scholar 

  39. Yu W, Xu D, Peng T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J Mater Chem A, 2015, 3: 19936–19947

    Article  CAS  Google Scholar 

  40. Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  41. Huang Y, Zhang J, Dai K, et al. Efficient solar-driven CO2 reduction on aminated 2D/2D BiOBr/CdS-diethylenetriamine S-scheme heterojunction. Ceramics Int, 2022, 48: 8423–8432

    Article  CAS  Google Scholar 

  42. Zhang Y, Gao M, Chen S, et al. Fabricating Ag/CN/ZnIn2S4 S-scheme heterojunctions with plasmonic effect for enhanced light-driven photocatalytic CO2 reduction. Acta Phys Chim Sin, 2023, 39: 2211051

    Article  Google Scholar 

  43. Yu W, Fu HJ, Mueller T, et al. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research. J Chem Phys, 2020, 153: 020902

    Article  CAS  PubMed  Google Scholar 

  44. Chen F, Ma T, Zhang T, et al. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv Mater, 2021, 33: 2005256

    Article  CAS  Google Scholar 

  45. Qaraah FA, Mahyoub SA, Hezam A, et al. Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl Catal B-Environ, 2022, 315: 121585

    Article  CAS  Google Scholar 

  46. Cheng C, Zhang J, Zhu B, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  47. Wu Y, Yang Y, Gu M, et al. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chin J Catal, 2023, 53: 123–133

    Article  CAS  Google Scholar 

  48. Wang L, Cheng B, Zhang L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  49. Zan Z, Li X, Gao X, et al. 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-scheme heterojunction for robust photocatalytic degradation and H2O2 production. Acta Phys Chim Sin, 2023, 39: 2209016

    Google Scholar 

  50. Huo Y, Zhang J, Dai K, et al. Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity. ACS Appl Energy Mater, 2021, 4: 956–968

    Article  CAS  Google Scholar 

  51. Yang H, Zhang J, Dai K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction Chin J Catal, 2022, 43: 255–264

    Article  CAS  Google Scholar 

  52. Wang L, Zhu B, Zhang J, et al. S-scheme heterojunction photocatalysts for CO2 reduction Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  53. Jiang L, Li J, Li Y, et al. Promoted charge separation from nickel intervening in [Bi2O2]2+ layers of Bi2O2S crystals for enhanced photocatalytic CO2 conversion. Appl Catal B-Environ, 2021, 294: 120249

    Article  CAS  Google Scholar 

  54. Wang Z, Liu R, Zhang J, et al. S-scheme porous g-C3N4/Ag2MoO4 heterojunction composite for CO2 photoreduction. Chin J Struct Chem. 2022, 41: 2206015–2206022

    CAS  Google Scholar 

  55. Wang J, Zhang G, Zhu J, et al. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development. ACS Catal, 2021, 11: 1406–1423

    Article  CAS  Google Scholar 

  56. Zhang J, Pan ZH, Yang Y, et al. Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. Chin J Catal, 2022, 43: 265–275

    Article  CAS  Google Scholar 

  57. Sun Z, Shih L, Tseng WJ. Facile preparation of In2O3-In2S3 core-shell composites for the enhanced photoelectric activity. Int J Appl Ceramic Tech, 2024, 21: 133–141

    Article  CAS  Google Scholar 

  58. Cannizzaro F, Hensen EJM, Filot IAW. The promoting role of Ni on In2O3 for CO2 hydrogenation to methanol. ACS Catal, 2023, 13: 1875–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Witoon T, Numpilai T, Nijpanich S, et al. Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts. Chem Eng J, 2022, 431: 133211

    Article  CAS  Google Scholar 

  60. Wang J, Wang Z, Zhang J, et al. Surface-active site modulation of the S-scheme heterojunction toward exceptional photocatalytic performance. Nanoscale, 2022, 14: 18087–18093

    Article  CAS  PubMed  Google Scholar 

  61. Ziemba M, Radtke M, Schumacher L, et al. Elucidating CO2 hydrogenation over In2O3 nanoparticles using operando UV/Vis and impedance spectroscopies. Angew Chem Int Ed, 2022, 61: e202209388

    Article  CAS  ADS  Google Scholar 

  62. Veeralingam S, Badhulika S. Enhanced carrier separation assisted high-performance piezo-phototronic self-powered photodetector based on core-shell ZnSnO3@In2O3 heterojunction. Nano Energy, 2022, 98: 107354

    Article  CAS  Google Scholar 

  63. Li J, Pan W, Liu Q, et al. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under nearinfrared light irradiation. J Am Chem Soc, 2021, 143: 6551–6559

    Article  CAS  PubMed  Google Scholar 

  64. Li H, Chen K, Fu J, et al. Photocatalytic CO2 Reduction Reactions. In: Georgios Stefanidis, Andrzej Stankiewicz (eds). Chemical Valorisation of Carbon Dioxide. Green Chemistry Series, 2022 ebook collection, 2022

  65. Zhao J, Ji M, Chen H, et al. Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 conversion. Appl Catal B-Environ, 2022, 307: 121162

    Article  CAS  Google Scholar 

  66. Zhang Y, Jiang Y, Duan Z, et al. Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity. J Hazard Mater, 2022, 434: 128836

    Article  CAS  PubMed  Google Scholar 

  67. Shen J, Qian L, Huang J, et al. Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3: Internal electric field, DFT calculation and degradation mechanism. Separation Purification Tech, 2021, 275: 119239

    Article  CAS  Google Scholar 

  68. Li J, Liu L, Liang Q, et al. Core-shell ZIF-8@MIL-68(In) derived ZnO nanoparticles-embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. J Hazard Mater, 2021, 414: 125395

    Article  CAS  PubMed  ADS  Google Scholar 

  69. He H, Wang Z, Dai K, et al. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction. Chin J Catal, 2023, 48: 267–278

    Article  CAS  Google Scholar 

  70. Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater, 2020, 393: 122383

    Article  CAS  PubMed  Google Scholar 

  71. Inglezakis VJ, Poulopoulos SG, Kazemian H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater, 2018, 272: 166–176

    Article  CAS  Google Scholar 

  72. Peng Z, Kobayashi H, Lu N, et al. Direct Z-scheme In2O3/In2S3 heterojunction for oxygen-mediated photocatalytic hydrogen production. Energy Fuels, 2022, 36: 15100–15111

    Article  CAS  Google Scholar 

  73. Nan JJ, Guo S, Alhashmialameer D, et al. Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr(VI). ACS Appl Nano Mater, 2022, 5: 8755–8766

    Article  CAS  Google Scholar 

  74. Hua J, Wang Z, Zhang J, et al. A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction. J Mater Sci Tech, 2023, 156: 64–71

    Article  CAS  Google Scholar 

  75. Gao R, He H, Bai J, et al. Pyrene-benzothiadiazole-based polymer/CdS 2D/2D organic/inorganic hybrid S-scheme heterojunction for efficient photocatalytic H2 evolution. Chin J Struct Chem, 2022, 41: 2206031–2206038

    CAS  Google Scholar 

  76. Li X, Zhang J, Wang Z, et al. Interfacial C-S bonds of g-C3N4/Bi19Br3S27 S-scheme heterojunction for enhanced photocatalytic CO2 reduction. Chem Eur J, 2023, 29: e202202669

    Article  CAS  PubMed  Google Scholar 

  77. Zhang W, Zhao S, Qin H, et al. Metal-organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution. Sci China Mater, 2023, 66: 1042–1052

    Article  CAS  Google Scholar 

  78. Li Y, Wu Q, Chen Y, et al. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Appl Catal B-Environ, 2021, 290: 120058

    Article  CAS  Google Scholar 

  79. Zafar F, Zhao R, Ali M, et al. Unprecedented contributions of In2O3 promoter on ordered mesoporous Cu/Al2O3 for CO2 hydrogenation to oxygenates. Chem Eng J, 2022, 439: 135649

    Article  CAS  Google Scholar 

  80. Zhao Z, Wang Z, Zhang J, et al. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv Funct Mater, 2023, 33: 2214470

    Article  CAS  Google Scholar 

  81. Cao G, Ye X, Duan S, et al. Plasmon enhanced Sn:In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2. Colloids Surfs A-Physicochem Eng Aspects, 2023, 656: 130398

    Article  CAS  Google Scholar 

  82. Zhang J, Wang L, Mousavi M, et al. Molecular-level engineering of S-scheme heterojunction: The sitespecific role for directional charge transfer. Chin J Struct Chem, 2022, 41: 2206003–2206005

    CAS  Google Scholar 

  83. Xia B, He B, Zhang J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater, 2022, 12: 2201449

    Article  CAS  Google Scholar 

  84. He B, Wang Z, Xiao P, et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv Mater, 2022, 34: 2203225

    Article  CAS  Google Scholar 

  85. Chen G, Zhou Z, Li B, et al. S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. J Environ Sci, 2023, doi: https://doi.org/10.1016/j.jes.2023.05.028

  86. Su B, Huang H, Ding Z, et al. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction. J Mater Sci Tech, 2022, 124: 164–170

    Article  CAS  Google Scholar 

  87. Wang Z, Wang J, Zhang J, et al. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions. Acta Phys Chim Sin, 2023, 39: 2209037

    Google Scholar 

  88. Akshhayya C, Ansari MO, Janani B, et al. Construction of a S-scheme CdS/CuFe2O4 heterojunction with suppressed charge recombination for enhanced visible light-driven photocatalytic activity. New J Chem, 2023, 47: 5431–5440

    Article  CAS  Google Scholar 

  89. Zhu B, Liu J, Sun J, et al. CdS decorated resorcinol–formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. J Mater Sci Tech, 2023, 162: 90–98

    Article  Google Scholar 

  90. He B, Xiao P, Wan S, et al. Rapid charge transfer endowed by interfacial Ni-O bonding in S-scheme heterojunction for efficient photocatalytic H2 and imine production. Angew Chem Int Ed, 2023, 62: e202313172

    Article  CAS  Google Scholar 

  91. Wang J, Wang Z, Dai K, et al. Review on inorganic-organic S-scheme photocatalysts. J Mater Sci Tech, 2023, 165: 187–218

    Article  Google Scholar 

  92. Su B, Zheng M, Lin W, et al. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production Adv Energy Mater, 2023, 13: 2203290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22278169 and 51973078), the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province (2022AH010028), the major projects of Education Department of Anhui Province (2022AH040068), and Anhui Provincial Quality Engineering Project (2022sx134).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Bian Y wrote the paper. He H participated in the writing. Dawson G and Zhang J gave some valuable suggestions on the revision. Dai K reviewed the manuscript and finalized the final version. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Jinfeng Zhang  (张金锋) or Kai Dai  (代凯).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yuqin Bian is currently pursuing an MS degree at the School of Materials Science and Engineering, Huaibei Normal University. Her research mainly focuses on semiconductor photocatalysis.

Jinfeng Zhang received his MS degree from Ningxia University in 2007, and PhD degree from Wuhan University of Technology in 2016. He carried out postdoctoral research at Wuhan University of Technology from 2016 to 2018. Since the end of 2007, he has been working at Huaibei Normal University. His research interests mainly focus on semiconductor photocatalysis.

Kai Dai is a professor at Huaibei Normal University. He received PhD degree from Shanghai University in 2007. He joined at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences in 2007, and then moved to Huaibei Normal University in 2010. His research interests mainly focus on energy conversion and storage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., He, H., Dawson, G. et al. In2O3/Bi19Br3S27 S-scheme heterojunction with enhanced photocatalytic CO2 reduction. Sci. China Mater. 67, 514–523 (2024). https://doi.org/10.1007/s40843-023-2725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2725-y

Keywords

Navigation