Skip to main content
Log in

A review of the REDOX properties of MoS2: From wastewater treatment to tumor therapy

MoS2 的氧化还原特性综述: 从污水治理到肿瘤治疗

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Environmental pollution and its consequent biological toxicity present formidable challenges in the contemporary world, amidst the endeavor to harness environmentally friendly materials as an effective strategy. Molybdenum disulfide (MoS2), a highly esteemed graphene-like nanomaterial, stands out as a prominent candidate owing to its outstanding properties, abundant availability, and promising development prospects. Its inherent biocompatibility not only holds immense potential for environmental waste-water treatment but also exhibits extraordinary promise in the realm of biotechnology, such as bactericidal and tumor therapy. The progression of typical MoS2 applications, from water treatment to tumor treatment, is reviewed, with a specific emphasis on the innovative utilization of MoS2 in these dual scenarios. In addition, we also anticipate the future applications of MoS2 based on cost-recovery efficiency.

摘要

环境污染及其衍生出的生物毒性是当今世界面临的两大挑战, 寻找环境友好型材料是解决这类问题的有效策略之一. 作为备受关注 的类石墨烯纳米材料, 二硫化钼(MoS2)性质优越, 来源广泛, 在污水处 理领域具有强大的实际应用价值. 与此同时, MoS2 还具有良好的生物相 容性, 因此研究学者们进而开发了其在生物应用领域的潜力, 包括杀菌 及肿瘤治疗等方面. 本文总结了MoS2 在水处理及肿瘤治疗方面的应用 及进展, 并关注MoS2 在这两种应用场景下的创新. 此外, 我们还根据成 本、回收效率对MoS2 的未来应用进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang J, Bai Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J, 2017, 312: 79–98

    Article  CAS  Google Scholar 

  2. Best J. Anthropogenic stresses on the world’s big rivers. Nat Geosci, 2019, 12: 7–21

    Article  ADS  CAS  Google Scholar 

  3. Tang W, Pei Y, Zheng H, et al. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere, 2022, 295: 133875

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ali I, Basheer AA, Mbianda XY, et al. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int, 2019, 127: 160–180

    Article  CAS  PubMed  Google Scholar 

  5. Chee S, Lee W, Jo Y, et al. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv Funct Mater, 2020, 30: 1908147

    Article  CAS  Google Scholar 

  6. Sun K, Jia F, Yang B, et al. Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst. Appl Mater Today, 2020, 18: 100453

    Article  Google Scholar 

  7. Pirarath R, Shivashanmugam P, Syed A, et al. Mercury removal from aqueous solution using petal-like MoS2 nanosheets. Front Environ Sci Eng, 2020, 15: 15

    Article  Google Scholar 

  8. Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) Nanosheets. Environ Sci Technol, 2017, 51: 8229–8244

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Arefi-Oskoui S, Khataee A, Ucun OK, et al. Toxicity evaluation of bulk and nanosheet MoS catalysts using battery bioassays. Chemosphere, 2021, 268: 128822

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yuan Y, Lu H, Yu Z, et al. Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem, 2015, 8: 4113–4127

    Article  CAS  PubMed  Google Scholar 

  11. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568–571

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wang H, Zhang C, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett, 2015, 15: 339–345

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ahmaruzzaman M, Gadore V. MoS2 based nanocomposites: An excellent material for energy and environmental applications. J Environ Chem Eng, 2021, 9: 105836

    Article  CAS  Google Scholar 

  14. Szary MJ, Michalewicz MT, Radny MW. Giant spin splitting induced by a symmetry-braking van der Waals interaction. Appl Surf Sci, 2019, 494: 619–626

    Article  ADS  CAS  Google Scholar 

  15. Guan G, Zhang S, Liu S, et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J Am Chem Soc, 2015, 137: 6152–6155

    Article  CAS  PubMed  Google Scholar 

  16. Dong X, Yin W, Zhang X, et al. Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl Mater Interfaces, 2018, 10: 4271–4284

    Article  CAS  PubMed  Google Scholar 

  17. Ying L, Yazdani M, Koya R, et al. Engineering tumor stromal mechanics for improved T cell therapy. Biochim Biophys Acta (BBA)-Gen Subj, 2022, 1866: 130095

    Article  CAS  Google Scholar 

  18. Zhao W, Li A, Chen C, et al. Transferrin-decorated, MoS2-capped hollow mesoporous silica nanospheres as a self-guided chemo-photothermal nanoplatform for controlled drug release and thermotherapy. J Mater Chem B, 2017, 5: 7403–7414

    Article  CAS  PubMed  Google Scholar 

  19. Qi X, Ye P, Xie M. MoS2 quantum dots based on lipid drug delivery system for combined therapy against Alzheimer’s disease. J Drug Deliver Sci Tech, 2023, 82: 104324

    Article  CAS  Google Scholar 

  20. Wu S, Liu X, Ren J, et al. Glutathione depletion in a benign manner by MoS2-based nanoflowers for enhanced hypoxia-irrelevant free-radical-based cancer therapy. Small, 2019, 15: 1904870

    Article  CAS  Google Scholar 

  21. Meng X, Liu Z, Cao Y, et al. Fabricating aptamer-conjugated PEGy-lated-MoS2/Cu18S theranostic nanoplatform for multiplexed imaging diagnosis and chemo-photothermal therapy of cancer. Adv Funct Mater, 2017, 27: 1605592

    Article  Google Scholar 

  22. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10: 1271–1275

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Parzinger E, Miller B, Blaschke B, et al. Photocatalytic stability of single- and few-layer MoS2. ACS Nano, 2015, 9: 11302–11309

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Zhao Y, Li J, et al. Facile strategy for controllable synthesis of hierarchical hollow MoS2 microspheres with enhanced photocatalytic properties. J Alloys Compd, 2019, 784: 330–338

    Article  CAS  Google Scholar 

  25. Wang S, Li Y, Hu Y, et al. One-step synthesis of 1T MoS2 hierarchical nanospheres for electrocatalytic hydrogen evolution. ACS Appl Energy Mater, 2022, 5: 11705–11712

    Article  CAS  Google Scholar 

  26. Nguyen TKA, Wang TH, Doong R. Architectures of flower-like MoS2 nanosheet coated N-doped carbon sphere electrode materials for enhanced capacitive deionization. Desalination, 2022, 540: 115979

    Article  CAS  Google Scholar 

  27. Cheng X, Wang L, Xie L, et al. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem Eng J, 2022, 439: 135757

    Article  CAS  Google Scholar 

  28. Li Y, Yu B, Liu B, et al. Superior Fenton-like and photo-Fenton-like activity of MoS2@TiO2/N-doped carbon nanofibers with phase-regulated and vertically grown MoS2 nanosheets. Chem Eng J, 2023, 452: 139542

    Article  ADS  CAS  Google Scholar 

  29. Li R, Zhang D, Shi Y, et al. Developing a built-in electric field in CdS nanorods by modified MoS2 for highly efficient photocatalytic H2O2 production. J Catal, 2022, 416: 322–331

    Article  CAS  Google Scholar 

  30. Zhao H, Fu H, Yang X, et al. MoS2/CdS rod-like nanocomposites as high-performance visible light photocatalyst for water splitting photocatalytic hydrogen production. Int J Hydrogen Energy, 2022, 47: 8247–8260

    Article  CAS  Google Scholar 

  31. Cai J, Xia Y, Gang R, et al. Activation of MoS2via tungsten doping for efficient photocatalytic oxidation of gaseous mercury. Appl Catal B-Environ, 2022, 314: 121486

    Article  CAS  Google Scholar 

  32. Xu J, Shao G, Tang X, et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat Commun, 2022, 13: 2193

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hua X, Chen H, Rong C, et al. Visible-light-driven photocatalytic degradation of tetracycline hydrochloride by Z-scheme Ag3PO4/1T@2H-MoS2 heterojunction: Degradation mechanism, toxicity assessment, and potential applications. J Hazard Mater, 2023, 448: 130951

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Kuwahara Y, Mori K, et al. Construction of hybrid MoS2 phase coupled with SiC heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation. Langmuir, 2020, 36: 1174–1182

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Xiang F, Lou W, et al. MoS2 with structure tuned photocatalytic ability for degradation of methylene blue. IOP Conf Ser-Earth Environ Sci, 2019, 300: 052021

    Article  Google Scholar 

  36. Su J, Yu S, Xu M, et al. Enhanced visible light photocatalytic performances of few-layer MoS2@TiO2 hollow spheres heterostructures. Mater Res Bull, 2020, 130: 110936

    Article  CAS  Google Scholar 

  37. Kumar SG, Rao KSRK. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv, 2015, 5: 3306–3351

    Article  ADS  CAS  Google Scholar 

  38. Liu HR, Shao GX, Zhao JF, et al. Worm-like Ag/ZnO core-shell heterostructural composites: Fabrication, characterization, and photocatalysis. J Phys Chem C, 2012, 116: 16182–16190

    Article  CAS  Google Scholar 

  39. Mahalakshmi G, Rajeswari M, Ponnarasi P. Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance. J Mater Sci-Mater Electron, 2020, 31: 22252–22264

    Article  CAS  Google Scholar 

  40. Mei W, Chen C, Chen X, et al. Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight. J Colloid Interface Sci, 2018, 530: 714–724

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zhang J, Huang L, Lu Z, et al. Crystal face regulating MoS2/TiO2(001) heterostructure for high photocatalytic activity. J Alloys Compd, 2016, 688: 840–848

    Article  CAS  Google Scholar 

  42. Tang Z, Xu L, Shu K, et al. Fabrication of TiO2@MoS2 heterostructures with improved visible light photocatalytic activity. Colloids Surfs A-Phys Eng Aspects, 2022, 642: 128686

    Article  CAS  Google Scholar 

  43. Wang G, Yuan H, Chang J, et al. ZnO/MoX2 (X = S, Se) composites used for visible light photocatalysis. RSC Adv, 2018, 8: 10828–10835

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang S, Ren C, Tian H, et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys Chem Chem Phys, 2018, 20: 13394–13399

    Article  CAS  PubMed  Google Scholar 

  45. Krishnan U, Kaur M, Kaur G, et al. MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Mater Res Bull, 2019, 111: 212–221

    Article  CAS  Google Scholar 

  46. Wang Q, Dong S, Zhang D, et al. Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J Mater Sci, 2018, 53: 1135–1147

    Article  ADS  CAS  Google Scholar 

  47. Zeng Y, Guo N, Li H, et al. A novel route to manufacture WO3@MoS2 p-n heterostructure hollow tubes with enhanced photocatalytic activity. Chem Commun, 2019, 55: 683–686

    Article  CAS  Google Scholar 

  48. Chen J, Liao Y, Wan X, et al. A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye. J Solid State Chem, 2020, 291: 121652

    Article  CAS  Google Scholar 

  49. Wang Y, Tang X, Liu Z, et al. Fabrication of a Z-scheme MoS2/CuO heterojunction for enhanced 2-mercaptobenzothiazole degradation activity and mechanism insight. New J Chem, 2020, 44: 18264–18273

    Article  CAS  Google Scholar 

  50. Wu MH, Li L, Xue YC, et al. Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Appl Catal B-Environ, 2018, 228: 103–112

    Article  CAS  Google Scholar 

  51. Liu H, Liang J, Shao L, et al. Promoting charge separation in dual defect mediated Z-scheme MoS2/g-C3N4 photocatalysts for enhanced photocatalytic degradation activity: Synergistic effect insight. Colloids Surfs A-Phys Eng Aspects, 2020, 594: 124668

    Article  CAS  Google Scholar 

  52. Zhang D, Liu W, Guo P, et al. Constructing MoS2-coupled carbon/g-C3N4 heterointerface to optimize charge delivery for enhanced photocatalytic capacity. J Alloys Compd, 2023, 935: 168041

    Article  CAS  Google Scholar 

  53. Guo P, Zhao F, Hu X. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation. J Alloys Compd, 2021, 867: 159044

    Article  CAS  Google Scholar 

  54. Zhang C, Ou Y, Lei W, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew Chem Int Ed, 2016, 55: 3054–3057

    Article  CAS  Google Scholar 

  55. Ronak S, Shweta V. Fenton’s reagent for the treatment of pharmaceutical industry wastewater. Int J Sci Res, 2015, 4: 3093–3096

    Google Scholar 

  56. Li T, Zhao Z, Wang Q, et al. Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues. Water Res, 2016, 105: 479–486

    Article  CAS  PubMed  Google Scholar 

  57. Sekaran G, Karthikeyan S, Evvie C, et al. Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Techn Environ Policy, 2013, 15: 245–253

    Article  CAS  Google Scholar 

  58. Sharma A, Kumar V. Behavior of steels against corrosion in peroxide solutions. J Mater Environ Sci, 2012, 3: 76–84

    CAS  Google Scholar 

  59. Xing M, Xu W, Dong C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem, 2018, 4: 1359–1372

    Article  CAS  Google Scholar 

  60. Yi Q, Ji J, Shen B, et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ Sci Technol, 2019, 53: 9725–9733

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Liu X, Yan X, Liu W, et al. Switching of radical and nonradical pathways through the surface defects of Fe3O4/MoOxSy in a Fenton-like reaction. Sci Bull, 2023, 68: 603–612

    Article  CAS  Google Scholar 

  62. Yan Q, Lian C, Huang K, et al. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew Chem Int Ed, 2021, 60: 17155–17163

    Article  CAS  Google Scholar 

  63. Chen Z, Lian C, Huang K, et al. “Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous Fenton for enhancing sulfadiazine degradation. Chin Chem Lett, 2022, 33: 1365–1372

    Article  CAS  Google Scholar 

  64. Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed, 2017, 56: 1825–1829

    Article  CAS  Google Scholar 

  65. Liu Y, Su Y, Guan J, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation. Adv Funct Mater, 2018, 28: 1706545

    Article  Google Scholar 

  66. Sun X, Zheng H, Jiang S, et al. Fabrication of FeOCl/MoS2 catalytic membranes for pollutant degradation and alleviating membrane fouling with peroxymonosulfate activation. J Environ Chem Eng, 2022, 10: 107717

    Article  CAS  Google Scholar 

  67. Dharman RK, Palanisamy G, Oh TH. Sonocatalytic degradation of ciprofloxacin and organic pollutant by 1T/2H phase MoS2 in Polyvinylidene fluoride nanocomposite membrane. Chemosphere, 2022, 308: 136571

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Chen Y, Zhang G, Liu H, et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew Chem Int Ed, 2019, 58: 8134–8138

    Article  CAS  Google Scholar 

  69. Zhu L, Ji J, Liu J, et al. Designing 3D-MoS2 sponge as excellent co-catalysts in advanced oxidation processes for pollutant control. Angew Chem, 2020, 132: 14072–14080

    Article  ADS  Google Scholar 

  70. Zhu L, Yan Q, Ran M, et al. Selective removal of ultrafine suspended solids during organic pollutant degradation by a MoS2/graphene oxide sponge. Sci Bull, 2023, 68: 892–896

    Article  CAS  Google Scholar 

  71. Pan L, Sun S, Chen Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv Energy Mater, 2020, 10: 2000214

    Article  CAS  Google Scholar 

  72. Wang H, Zhang L, Chen Z, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem Soc Rev, 2014, 43: 5234–5244

    Article  CAS  PubMed  Google Scholar 

  73. Starr MB, Wang X. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci Rep, 2013, 3: 2160

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen TNN, Chang KS. Piezophotodegradation and piezophotoelectrochemical water splitting of hydrothermally grown BiFeO3 films with various morphologies. J Environ Chem Eng, 2022, 10: 107213

    Article  CAS  Google Scholar 

  75. Liu YL, Wu JM. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy, 2019, 56: 74–81

    Article  CAS  Google Scholar 

  76. Wang Z, Xiang M, Huo B, et al. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: Performance and mechanism. Nano Energy, 2023, 107: 108162

    Article  CAS  Google Scholar 

  77. Zhang C, Fei W, Wang H, et al. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J Hazard Mater, 2020, 399: 123109

    Article  CAS  PubMed  Google Scholar 

  78. Wu JM, Chang WE, Chang YT, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by singl- and few-layers MoS2 nanoflowers. Adv Mater, 2016, 28: 3718–3725

    Article  CAS  PubMed  Google Scholar 

  79. Wu JM, Sun YG, Chang WE, et al. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy, 2018, 46: 372–382

    Article  CAS  Google Scholar 

  80. Ren T, Tian W, Shen Q, et al. Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy, 2021, 90: 106527

    Article  CAS  Google Scholar 

  81. Lin YT, Lai SN, Wu JM. Simultaneous piezoelectrocatalytic hydrogen-evolution and degradation of water pollutants by quartz Micro-rods@Few-Layered MoS2 hierarchical heterostructures. Adv Mater, 2020, 32: 2002875

    Article  CAS  Google Scholar 

  82. Pan M, Liu S, Chew JW. Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst. Nano Energy, 2020, 68: 104366

    Article  CAS  Google Scholar 

  83. Li H, Xiong Y, Wang Y, et al. High piezocatalytic capability in CuS/MoS2 nanocomposites using mechanical energy for degrading pollutants. J Colloid Interface Sci, 2022, 609: 657–666

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Zhao X, Lei Y, Fang P, et al. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction. Nano Energy, 2019, 66: 104168

    Article  CAS  Google Scholar 

  85. Li G, Zhang D, Qiao Q, et al. All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc, 2016, 138: 16632–16638

    Article  CAS  PubMed  Google Scholar 

  86. Wang H, Xiao X, Liu S, et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J Am Chem Soc, 2019, 141: 18578–18584

    Article  CAS  PubMed  Google Scholar 

  87. Zhu Q, Qiu B, Du M, et al. Dopant-induced edge and basal plane catalytic sites on ultrathin C3N4 nanosheets for photocatalytic water reduction. ACS Sustain Chem Eng, 2020, 8: 7497–7502

    Article  CAS  Google Scholar 

  88. Zhu Q, Qiu B, Duan H, et al. Electron directed migration cooperated with thermodynamic regulation over bimetallic NiFeP/g-C3N4 for enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ, 2019, 259: 118078

    Article  CAS  Google Scholar 

  89. Zhang K, Kim JK, Ma M, et al. Delocalized electron accumulation at nanorod tips: Origin of efficient H2 generation. Adv Funct Mater, 2016, 26: 4527–4534

    Article  CAS  Google Scholar 

  90. Kampouri S, Stylianou KC. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal, 2019, 9: 4247–4270

    Article  CAS  Google Scholar 

  91. Liu T, Wang C, Gu X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater, 2014, 26: 3433–3440

    Article  PubMed  Google Scholar 

  92. Wu Y, Chen X, Cao J, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Appl Catal B-Environ, 2022, 303: 120878

    Article  CAS  Google Scholar 

  93. Liu W, Fu P, Zhang Y, et al. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc Natl Acad Sci USA, 2023, 120: e2218813120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tan L, Wang S, Xu K, et al. Layered MoS2 hollow spheres for highly-efficient photothermal therapy of rabbit liver orthotopic transplantation tumors. Small, 2016, 12: 2046–2055

    Article  CAS  PubMed  Google Scholar 

  95. Sun L, Bai H, Jiang H, et al. MoS2/LaF3 for enhanced photothermal therapy performance of poorly-differentiated hepatoma. Colloids Surfs B-Biointerfaces, 2022, 214: 112462

    Article  CAS  Google Scholar 

  96. Liu L, Jiang H, Dong J, et al. PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surfs B-Biointerfaces, 2020, 185: 110590

    Article  CAS  Google Scholar 

  97. Jiang Y, Baimanov D, Jin S, et al. In situ turning defects of exfoliated Ti3C2 MXene into Fenton-like catalytic active sites. Proc Natl Acad Sci USA, 2023, 120: e2210211120

    Article  CAS  PubMed  Google Scholar 

  98. Wu Y, Song X, Zhou X, et al. Piezo-activated atomic-thin molybdenum Disulfide/MXene nanoenzyme for integrated and efficient tumor therapy via ultrasound-triggered Schottky electric field. Small, 2023, 19: 2205053

    Article  CAS  Google Scholar 

  99. Chen L, Feng Y, Zhou X, et al. One-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy. ACS Appl Mater Interfaces, 2017, 9: 17347–17358

    Article  CAS  PubMed  Google Scholar 

  100. Huang Y, Zhai X, Ma T, et al. A unified therapeutic-prophylactic tissue-engineering scaffold demonstrated to prevent tumor recurrence and overcoming infection toward bone remodeling. Adv Mater, 2023, 35: 2300313

    Article  CAS  Google Scholar 

  101. Karges J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew Chem Int Ed, 2022, 61: e202112236

    Article  ADS  CAS  Google Scholar 

  102. Gao S, Lin H, Zhang H, et al. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv Sci, 2019, 6: 1801733

    Article  Google Scholar 

  103. Wang L, Zhang X, You Z, et al. A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew Chem Int Ed, 2023, 62: e202217448

    Article  CAS  Google Scholar 

  104. Yang B, Shi J. Ascorbate tumor chemotherapy by an iron-engineered nanomedicine-catalyzed tumor-specific pro-oxidation. J Am Chem Soc, 2020, 142: 21775–21785

    Article  CAS  PubMed  Google Scholar 

  105. Qian X, Zhang J, Gu Z, et al. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials, 2019, 211: 1–13

    Article  CAS  PubMed  Google Scholar 

  106. Yang J, Yao H, Guo Y, et al. Enhancing tumor catalytic therapy by co-catalysis. Angew Chem Int Ed, 2022, 61: e202200480

    Article  CAS  Google Scholar 

  107. Li X, Xiao H, Xiu W, et al. Mitochondria-targeting MoS2-based nanoagents for enhanced NIR-II photothermal-chemodynamic synergistic oncotherapy. ACS Appl Mater Interfaces, 2021, 13: 55928–55938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22325602, 22176060) and Program of Shanghai Academic/Technology Research Leader (23XD1421000).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Xing M initiated the original inspiration for the manuscript. Liang L and Cao J wrote the manuscript. Huan J modified the tumor therapy section. Xing M edited and modified the manuscript.

Corresponding authors

Correspondence to Jiazhen Cao  (曹嘉真), Jinliang Huan  (郇金亮) or Mingyang Xing  (邢明阳).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Lihong Liang is currently a Master’s degree student at East China University of Science and Technology (ECUST), under the guidance of Prof. Mingyang Xing. She graduated from ECUST in 2021 with a bachelor’s degree in applied chemistry. Her research is focused on the application of advanced oxidation processes (AOPs) in the water pollution treatment.

Jiazhen Cao obtained her Master’s degree from Shanghai Normal University in 2022. Currently, she is pursuing her Doctoral degree at ECUST. Her research interests center around the application and mechanistic exploration of catalytic materials in the realms of environmental and energy sciences, with a specific emphasis on carbon dioxide and methane conversion processes.

Jinliang Huan is a professor and postgraduate supervisor at the School of Clinical Medicine, Affiliated Hospital of Jiangsu University (Shanghai Eighth People’s Hospital). He obtained his doctoral degree from the Second Military Medical University in 2005 and then worked at Shanghai Eighth People’s Hospital. From April 2007 to April 2009, he joined the Moroccan medical team for two years. His research focuses on the pathogenesis of tumors

Mingyang Xing is the professor, supervisor of postgraduate at the School of Chemistry and Molecular Engineering, ECUST. He obtained his doctoral degree in 2012 from ECUST, and then worked at University of California, Riverside as a visiting scholar for one year. His research focuses on the environmental catalysis and environmental pollution control chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Cao, J., Huan, J. et al. A review of the REDOX properties of MoS2: From wastewater treatment to tumor therapy. Sci. China Mater. 67, 382–396 (2024). https://doi.org/10.1007/s40843-023-2722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2722-y

Keywords

Navigation