Skip to main content
Log in

Boosting the mobility of organic semiconductors through strain engineering

通过应变工程提高有机半导体的迁移率

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Organic semiconductors (OSCs) are pivotal for advancing flexible electronics. However, their application has been severely hindered by their poor mobility. Although molecular and device engineering can improve OSC mobility, progress has stagnated in recent years. In this study, we uncovered the layer-dependent charge transport properties of OSCs under strain and substantially enhanced their mobility by strain engineering. Applying strain reduced intermolecular π-π spacing and electron-phonon scattering, thereby improving the charge transport efficiency. We observed a direct correlation between strain factor and material thickness, with thinner crystals demonstrating higher strain factors. Using molecularly thin two-dimensional molecular crystals, we achieved a substantial 58% increase in mobility. Our findings open new avenues to enhancing the mobility of OSCs.

摘要

有机半导体(OSCs)是推动柔性电子发展的关键. 然而, 其应用一直受到其较低迁移率的阻碍. 虽然分子工程和器件工程可以提高OSC迁移率, 但近年来进展几乎停滞不前. 本研究揭示了有机半导体在应变下的层数依赖电荷输运特性, 并通过应变工程可大幅提高其迁移率. 施加应变可以减小分子间π–π间距并减少电子-声子散射, 从而提高电荷输运效率. 我们观察到应变因子和材料厚度之间存在直接相关性, 较薄的晶体具有较高的应变因子. 使用分子级薄的二维分子晶体, 我们观察到迁移率显著提高了58%. 我们的研究结果为提高有机半导体的迁移率开辟了新的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Qian J, Jiang S, Li S, et al. Solution-processed 2D molecular crystals: Fabrication techniques, transistor applications, and physics. Adv Mater Technol, 2018, 4: 1800182

    Article  Google Scholar 

  2. Chen S, Li Z, Qiao Y, et al. Solution-processed organic semiconductor crystals for field-effect transistors: From crystallization mechanism towards morphology control. J Mater Chem C, 2021, 9: 1126–1149

    Article  ADS  CAS  Google Scholar 

  3. Diao Y, Shaw L, Bao Z, et al. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci, 2014, 7: 2145–2159

    Article  CAS  Google Scholar 

  4. Liu X, Zhang Y, Zhang X, et al. Continuous and highly ordered organic semiconductor thin films via dip-coating: The critical role of meniscus angle. Sci China Mater, 2020, 63: 1257–1264

    Article  CAS  Google Scholar 

  5. Ji D, Li T, Hu W, et al. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater, 2019, 31: e1806070

    Article  PubMed  Google Scholar 

  6. Geng Y, Zhao Y, Zhao J, et al. Optical and electrical modulation in ultraviolet photodetectors based on organic one-dimensional photochromic arrays. SmartMat, 2021, 2: 388–397

    Article  CAS  Google Scholar 

  7. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555: 83–88

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wang W, Wang S, Rastak R, et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron, 2021, 4: 143–150

    Article  CAS  Google Scholar 

  9. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499: 458–463

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Paterson AF, Singh S, Fallon KJ, et al. Recent progress in high-mobility organic transistors: A reality check. Adv Mater, 2018, 30: 1801079

    Article  Google Scholar 

  11. Chan PKL. The motivation for and challenges to scaling down organic field-effect transistors. Adv Elect Mater, 2019, 5: 1900029

    Article  Google Scholar 

  12. Liu Z, Han W, Lan J, et al. Molecular engineering of chalcogen-embedded anthanthrenes via peri-selective C-H activation: Fine-tuning of crystal packing for organic field-effect transistors. Angew Chem Int Ed, 2023, 62: e202211412

    Article  CAS  Google Scholar 

  13. Lee J, Han AR, Kim J, et al. Solution-processable ambipolar diketo-pyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc, 2012, 134: 20713–20721

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Wang H, Yan D. Organic high electron mobility transistors realized by 2D electron gas. Adv Mater, 2017, 29: 1702427

    Article  Google Scholar 

  15. Dong H, Fu X, Liu J, et al. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv Mater, 2013, 25: 6158–6183

    Article  CAS  PubMed  Google Scholar 

  16. Darmawan P, Minari T, Xu Y, et al. Optimal structure for high-performance and low-contact-resistance organic field-effect transistors using contact-doped coplanar and pseudo-staggered device architectures. Adv Funct Mater, 2012, 22: 4577–4583

    Article  CAS  Google Scholar 

  17. Jiang H, Zhu S, Cui Z, et al. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem Soc Rev, 2022, 51: 3071–3122

    Article  CAS  PubMed  Google Scholar 

  18. Jiang W, Li Y, Wang Z. Heteroarenes as high performance organic semiconductors. Chem Soc Rev, 2013, 42: 6113–6127

    Article  CAS  PubMed  Google Scholar 

  19. Gao P, Beckmann D, Tsao HN, et al. Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene (DTBDT) as semiconductor for high-performance, solution-processed organic field-effect transistors. Adv Mater, 2009, 21: 213–216

    Article  CAS  Google Scholar 

  20. Yokota T, Kajitani T, Shidachi R, et al. A few-layer molecular film on polymer substrates to enhance the performance of organic devices. Nat Nanotech, 2018, 13: 139–144

    Article  ADS  CAS  Google Scholar 

  21. Sokolov AN, Cao Y, Johnson OB, et al. Mechanistic considerations of bending-strain effects within organic semiconductors on polymer dielectrics. Adv Funct Mater, 2012, 22: 175–183

    Article  CAS  Google Scholar 

  22. Liu C, Xu Y, Li Y, et al. Critical impact of gate dielectric interfaces on the contact resistance of high-performance organic field-effect transistors. J Phys Chem C, 2013, 117: 12337–12345

    Article  CAS  Google Scholar 

  23. Darmawan P, Minari T, Kumatani A, et al. Reduction of charge injection barrier by 1-nm contact oxide interlayer in organic field effect transistors. Appl Phys Lett, 2012, 100: 013303

    Article  ADS  Google Scholar 

  24. Peng B, Cao K, Lau AHY, et al. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv Mater, 2020, 32: e2002281

    Article  PubMed  Google Scholar 

  25. Zhang Q, Hu W, Sirringhaus H, et al. Recent progress in emerging organic semiconductors. Adv Mater, 2022, 34: 2108701

    Article  CAS  Google Scholar 

  26. Wang H, Deng L, Tang Q, et al. Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing. IEEE Electron Device Lett, 2017, 38: 1598–1601

    Article  ADS  CAS  Google Scholar 

  27. Kubo T, Häusermann R, Tsurumi J, et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat Commun, 2016, 7: 11156

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi HH, Yi HT, Tsurumi J, et al. A large anisotropic enhancement of the charge carrier mobility of flexible organic transistors with strain: A Hall effect and Raman study. Adv Sci, 2020, 7: 1901824

    Article  CAS  Google Scholar 

  29. Giri G, Verploegen E, Mannsfeld SCB, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480: 504–508

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Cosseddu P, Tiddia G, Milita S, et al. Continuous tuning of the mechanical sensitivity of Pentacene OTFTs on flexible substrates: From strain sensors to deformable transistors. Org Electron, 2013, 14: 206–211

    Article  CAS  Google Scholar 

  31. Nam SH, Jeon PJ, Min SW, et al. Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate. Adv Funct Mater, 2014, 24: 4413–4419

    Article  CAS  Google Scholar 

  32. Chen Y, Huang L, Hu C, et al. A unified framework of slip controlled bending and rippled superlattice design of few-layer graphene. Appl Surf Sci, 2023, 613: 155979

    Article  CAS  Google Scholar 

  33. Wang Q, Yang F, Zhang Y, et al. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J Am Chem Soc, 2018, 140: 5339–5342

    Article  CAS  PubMed  Google Scholar 

  34. Yao J, Zhang Y, Tian X, et al. Layer-defining strategy to grow two-dimensional molecular crystals on a liquid surface down to the monolayer limit. Angew Chem Int Ed, 2019, 58: 16082–16086

    Article  CAS  Google Scholar 

  35. Yang S, Zhang Y, Wang Y, et al. Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance photo-transistors. Chem Commun, 2021, 57: 2669–2672

    Article  CAS  Google Scholar 

  36. Geiger M, Acharya R, Reutter E, et al. Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors. Adv Mater Inter, 2020, 7: 1902145

    Article  CAS  Google Scholar 

  37. Yang C, Yoon J, Kim SH, et al. Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Appl Phys Lett, 2008, 92: 243305

    Article  ADS  Google Scholar 

  38. Sekitani T, Kato Y, Iba S, et al. Bending experiment on pentacene field-effect transistors on plastic films. Appl Phys Lett, 2005, 86: 073511

    Article  ADS  Google Scholar 

  39. Nigam A, Schwabegger G, Ullah M, et al. Strain induced anisotropic effect on electron mobility in C60 based organic field effect transistors. Appl Phys Lett, 2012, 101: 083305

    Article  ADS  Google Scholar 

  40. Abe Y, Taguchi D, Manaka T, et al. Study of carrier transport in flexible organic field-effect transistors: Analysis of bending effect and microscopic observation using electric-field-induced optical second-harmonic generation. Thin Solid Films, 2014, 554: 166–169

    Article  ADS  CAS  Google Scholar 

  41. Matta M, Pereira MJ, Gali SM, et al. Unusual electromechanical response in rubrene single crystals. Mater Horiz, 2018, 5: 41–50

    Article  CAS  Google Scholar 

  42. Häfner W, Kiefer W. Raman spectroscopic investigations on molecular crystals: Pressure and temperature dependence of external phonons in naphthalene-d8 and anthracene-d10. J Chem Phys, 1987, 86: 4582–4596

    Article  ADS  Google Scholar 

  43. Venuti E, Della Valle RG, Farina L, et al. Phonons and structures of tetracene polymorphs at low temperature and high pressure. Phys Rev B, 2004, 70: 104106

    Article  ADS  Google Scholar 

  44. Zhao L, Baer BJ, Chronister EL. High-pressure Raman study of anthracene. J Phys Chem A, 1999, 103: 1728–1733

    Article  CAS  Google Scholar 

  45. Wang LJ, Li QK, Shuai Z. Effects of pressure and temperature on the carrier transports in organic crystal: A first-principles study. J Chem Phys, 2008, 128: 194706

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073206 and 52273193), the Fundamental Research Funds for the Central Universities, and Tianjin University 2021 Postgraduate Education Special Fund (B2-2021-005).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li R and Hu W conceived the idea and directed the project. Wang Z carried out most of the experiments. Wu X performed some OFET measurements. Yang S performed some XRD measurements. Yao J grew some of the crystals. Wang Z and Li R wrote the paper. All authors analyzed the experimental results and contributed to the discussion.

Corresponding author

Correspondence to Rongjin Li  (李荣金).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Zhaofeng Wang obtained his Bachelor’s degree from Jiangsu University of Science and Technology in 2019. He is currently a PhD student at the School of Science, Tianjin University under the supervision of Prof. Rongjin Li. His main research interests are 2D molecular crystals and optoelectronic devices.

Rongjin Li received his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences, in 2009 under the supervision of Prof. Wenping Hu and Prof. Daoben Zhu. From 2009–2011, he conducted postdoctoral research at Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. From 2011 to 2015, he worked in Prof. Klaus Mullen’s group at Max Planck Institute for Polymer Research. He then joined Tianjin University as a full professor in 2015. His research focuses on 2D molecular crystals and optoelectronic devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, X., Yang, S. et al. Boosting the mobility of organic semiconductors through strain engineering. Sci. China Mater. 67, 665–671 (2024). https://doi.org/10.1007/s40843-023-2719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2719-y

Keywords

Navigation