Skip to main content
Log in

Boosting the photosynthesis of hydrogen peroxide directly from pure water and air over S-scheme fiber heterojunction

S型纤维异质结实现高效纯水光合成过氧化氢

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The generation of solar H2O2 through the reaction of O2 and H2O is a cost-effective and environmental-friendly procedure. Nevertheless, most photocatalysts are only active when sacrificial donors are present, thereby limiting their practicality. Herein, the S-scheme fiber heterojunction Nb2O5@NiS (NONS) was fabricated as a catalyst for photocatalytic hydrogen peroxide evolution through an electro-spinning-assisted ion exchange strategy. In situ X-ray photoelectron spectroscopy analysis was then used to investigate the excellent performance (0.48 mmol g−1) of the optimized photocatalyst NONS-30 obtained directly from pure water and air through the S-scheme charge transfer path. Following scavenger capture experiments and electron spin resonance spectroscopy, an overlooked pathway was discovered that implicated 1O2 in the formation of H2O2. This work also revealed an alternative reaction pathway to produce H2O2 by fabricating fiber heterojunction photocatalysts.

摘要

太阳能驱动在纯水中生成过氧化氢(H2O2)被认为是一种具有成 本效益且环保的方法. 然而, 大多数光催化剂只有在存在牺牲供体的情 况下才会表现出性能, 从而限制了其实用性. 本文通过静电纺丝辅助离 子交换策略, 制备出了S型纤维异质结Nb2O5@NiS (NONS), 作为光催化 产过氧化氢的催化剂. 通过原位X射线光电子能谱分析研究了S型电荷 转移路径. 通过捕获实验和电子自旋共振光谱, 证实了单线态氧(1O2) 与H2O2的形成有关. 这项工作还揭示了通过制造纤维异质结光催化剂 产生H2O2的另一种反应途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shen S, Li X, Zhou Y, et al. Novel BiOBr/Bi2S3 high-low junction prepared by molten salt method for boosting photocatalytic degradation and H2O2 production. J Mater Sci Tech, 2023, 155: 148–159

    Article  CAS  Google Scholar 

  2. Wang K, Qin H, Li J, et al. Metallic AgInS2 nanocrystals with sulfur vacancies boost atmospheric CO2 photoreduction under near-infrared light illumination. Appl Catal B-Environ, 2023, 332: 122763

    Article  CAS  Google Scholar 

  3. Cheng L, Yue X, Fan J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv Mater, 2022, 34: 2200929

    Article  CAS  Google Scholar 

  4. Wu X, Ma H, Wang K, et al. High-yield and crystalline graphitic carbon nitride photocatalyst: One-step sodium acetate-mediated synthesis and improved hydrogen-evolution performance. J Colloid Interface Sci, 2023, 633: 817–827

    Article  CAS  PubMed  Google Scholar 

  5. Wang K, Du Y, Li Y, et al. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy, 2023, 5: e264

    Article  CAS  Google Scholar 

  6. Wang K, Shao X, Cheng Q, et al. In sito-illuminated X-ray photoelectron spectroscopy investigation of S-scheme Ta2O5/ZnIn2S4 core-shell hybrid nanofibers for highly efficient solar-driven CO2 overall splitting. Sol RRL, 2022, 6: 2200736

    Article  CAS  Google Scholar 

  7. Liu W, Wang P, Chen J, et al. Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride. Adv Funct Mater, 2022, 32: 2205119

    Article  CAS  Google Scholar 

  8. He B, Luo C, Wang Z, et al. Synergistic enhancement of solar H2O2 and HCOOH production over TiO2 by dual co-catalyst loading in a triphase system. Appl Catal B-Environ, 2023, 323: 122200

    Article  CAS  Google Scholar 

  9. Ji XY, Wang YY, Li Y, et al. Enhancing photocatalytic hydrogen peroxide production of Ti-based metal-organic frameworks: The leading role of facet engineering. Nano Res, 2022, 15: 6045–6053

    Article  ADS  CAS  Google Scholar 

  10. Ji XY, Wang YY, Tao J. Metal-organic frameworks for the photocatalytic oxygen reduction reaction to hydrogen peroxide. Mater Chem Front, 2023, 7: 5120–5139

    Article  CAS  Google Scholar 

  11. Yang C, Wan S, Zhu B, et al. Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water. Angew Chem Int Ed, 2022, 61: e202208438

    Article  ADS  CAS  Google Scholar 

  12. Wang L, Bie C, Yu J. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem, 2022, 4: 973–983

    Article  CAS  Google Scholar 

  13. Wang L, Zhu B, Zhang J, et al. S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  14. Xu Q, He R, Li Y. Problems and mistakes for electron transfer mechanism in Z-scheme photocatalytic system. Acta Phys Chim Sin, 2022, 0: 2211009

    Article  Google Scholar 

  15. Han G, Xu F, Cheng B, et al. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions. Acta Phys Chim Sin, 2022, 0: 2112037–0

    Article  Google Scholar 

  16. Jiang Z, Cheng B, Zhang L, et al. A review on ZnO-based S-scheme heterojunction photocatalysts. Chin J Catal, 2023, 52: 32–49

    Article  CAS  Google Scholar 

  17. Shao X, Li K, Li J, et al. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion. Chin J Catal, 2023, 51: 193–203

    Article  CAS  Google Scholar 

  18. Yang J, Wang J, Zhao W, et al. 0D/1D Cu2-xS/TiO2 S-scheme heterojunction with enhanced photocatalytic CO2 reduction performance via surface plasmon resonance induced photothermal effects. Appl Surf Sci, 2023, 613: 156083

    Article  CAS  Google Scholar 

  19. Zhang J, Lang J, Wei Y, et al. Efficient photocatalytic H2O2 production from oxygen and pure water over graphitic carbon nitride decorated by oxidative red phosphorus. Appl Catal B-Environ, 2021, 298: 120522

    Article  CAS  Google Scholar 

  20. Liu C, Bao T, Yuan L, et al. Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: Heterojunction coverage matters. Adv Funct Mater, 2022, 32: 2111404

    Article  CAS  Google Scholar 

  21. Xu X, Sui Y, Chen W, et al. The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation. Appl Catal B-Environ, 2024, 341: 123271

    Article  CAS  Google Scholar 

  22. Shi H, Li Y, Wang X, et al. Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Appl Catal B-Environ, 2021, 297: 120414

    Article  CAS  Google Scholar 

  23. Wang W, Song Q, Luo Q, et al. Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nat Commun, 2023, 14: 2493

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Pan Z, Vequizo JJM, et al. Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat Commun, 2022, 13: 1034

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Zhu B, Wang L, et al. In-situ grown N, S co-doped graphene on TiO2 fiber for artificial photosynthesis of H2O2 and mechanism study. Appl Catal B-Environ, 2022, 317: 121788

    Article  CAS  Google Scholar 

  26. Wang K, Wang Q, Zhang K, et al. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J Mater Sci Tech, 2022, 124: 202–208

    Article  CAS  Google Scholar 

  27. Yang GC, Pan QY, Yang P, et al. Heteropolyacids supported on hierarchically macro/mesoporous TiO2: Efficient catalyst for deep oxidative desulfurization of fuel. Tungsten, 2021, 4: 28–37

    Article  Google Scholar 

  28. Hou W, Guo H, Wu M, et al. Amide covalent bonding engineering in heterojunction for efficient solar-driven CO2 reduction. ACS Nano, 2023, 17: 20560–20569

    Article  CAS  PubMed  Google Scholar 

  29. Cheng C, Zhang J, Zhu B, et al. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  30. Wang Q, Wang G, Wang J, et al. In situ hydrothermal synthesis of ZnS/TiO2 nanofibers S-scheme heterojunction for enhanced photocatalytic H2 evolution. Adv Sustain Syst, 2022, 7: 2200027

    Article  Google Scholar 

  31. Wang K, Shao X, Zhang K, et al. 0D/3D Bi3TaO7/ZnIn2S4 heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H2 evolution: In situ irradiated XPS investigation and S-scheme mechanism insight. Appl Surf Sci, 2022, 596: 153444

    Article  CAS  Google Scholar 

  32. Wu X, Chen G, Li L, et al. ZnIn2S4-based S-scheme heterojunction photocatalyst. J Mater Sci Tech, 2023, 167: 184–204

    Article  Google Scholar 

  33. Li F, Yue X, Liao Y, et al. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat Commun, 2023, 14: 3901

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang D, Zhang R, Liu J, et al. 3D/2D ZnIn2S4/BiFeO3 as S-scheme heterojunction photocatalyst for boosted visible-light hydrogen evolution. J Am Ceram Soc, 2023, 106: 4785–4793

    Article  CAS  Google Scholar 

  35. Yang Y, Liu J, Gu M, et al. Bifunctional TiO2/COF S-scheme photocatalyst with enhanced H2O2 production and furoic acid synthesis mechanism. Appl Catal B-Environ, 2023, 333: 122780

    Article  CAS  Google Scholar 

  36. Peng Y, Cheng B, Zhang L, et al. In2O3/ZnO S-scheme heterojunction nanocomposite hollow microtubes with highly sensitive response to formaldehyde. Sens Actuat B-Chem, 2023, 385: 133700

    Article  CAS  Google Scholar 

  37. Zhao Z, Wang Z, Zhang J, et al. Interfacial chemical bond and oxygen vacancy-enhanced In2O3/CdSe-DETA S-scheme heterojunction for photocatalytic CO2 conversion. Adv Funct Mater, 2023, 33: 2214470

    Article  CAS  Google Scholar 

  38. Wu X, Chen G, Wang J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution. Acta Phys Chim Sin, 2023, 0: 2212016

    Article  Google Scholar 

  39. Zan Z, Li X, Gao X, et al. 0D/2D carbon nitride quantum dots (CNQDs)/BiOBr S-scheme heterojunction for robust photocatalytic degradation and H2O2 production. Acta Phys Chim Sin, 2023, 39: 2209016

    Google Scholar 

  40. Yu J, Yao X, Su P, et al. Construction of Cu3Mo2O9ZMn0.3Cd0.7S S-scheme heterojunction for photocatalytic hydrogen production via water splitting. J Liaocheng Univer, 2024, DOI: https://doi.org/10.19728/j.issn1672-6634.2023090011

  41. Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  42. Liu B, Bie C, Zhang Y, et al. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production. Langmuir, 2021, 37: 14114–14124

    Article  CAS  PubMed  Google Scholar 

  43. Wang K, Cheng Q, Hou W, et al. Unlocking the charge-migration mechanism in S-scheme junction for photoreduction of diluted CO2 with high selectivity. Adv Funct Mater, 2023, 2309603

  44. Xia Y, Zhu B, Qin X, et al. Zinc porphyrin/g-C3N4 S-scheme photocatalyst for efficient H2O2 production. Chem Eng J, 2023, 467: 143528

    Article  CAS  Google Scholar 

  45. He Y, Yang Z, Yu J, et al. Selective conversion of CO2 to CH4 enhanced by WO3/In2O3 S-scheme heterojunction photocatalysts with efficient CO2 activation. J Mater Chem A, 2023, 11: 14860–14869

    Article  CAS  Google Scholar 

  46. Wang K, Peng L, Shao X, et al. Nb-O-C charge transfer bridge in 2D/2D Nb2O5/g-C3N4 S-scheme heterojunction for boosting solar-driven CO2 reduction: In situ illuminated X-ray photoelectron spectroscopy investigation and mechanism insight. Sol RRL, 2022, 6: 2200434

    Article  CAS  Google Scholar 

  47. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  48. Hu P, Liang G, Zhu B, et al. Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS Catal, 2023, 13: 12623–12633

    Article  CAS  Google Scholar 

  49. Shang Q, Wang J, Yang J, et al. Photocatalytic hydrogen evolution coupled with tetracycline photodegradation over S-scheme BaTiO3/Ag2S dual-function nanofibers: Performance and mechanism. Appl Surf Sci, 2023, 635: 157760

    Article  CAS  Google Scholar 

  50. Wang L, Sun J, Cheng B, et al. S-scheme heterojunction photocatalysts for H2O2 production. J Phys Chem Lett, 2023, 14: 4803–4814

    Article  CAS  PubMed  Google Scholar 

  51. He B, Wang Z, Xiao P, et al. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv Mater, 2022, 34: 2203225

    Article  CAS  Google Scholar 

  52. Li S, Cai M, Liu Y, et al. S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin J Catal, 2022, 43: 2652–2664

    Article  CAS  Google Scholar 

  53. Jiang Z, Cheng B, Zhang Y, et al. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production. J Mater Sci Tech, 2022, 124: 193–201

    Article  CAS  Google Scholar 

  54. Zhang X, Yu J, Macyk W, et al. C3N4/PDA S-scheme heterojunction with enhanced photocatalytic H2O2 production performance and its mechanism. Adv Sustain Syst, 2022, 7: 2200113

    Article  Google Scholar 

  55. Gu M, Yang Y, Zhang L, et al. Efficient sacrificial-agent-free solar H2O2 production over all-inorganic S-scheme composites. Appl Catal B-Environ, 2023, 324: 122227

    Article  CAS  Google Scholar 

  56. Wang K, Qin H, Shao X, et al. Unveiling S-scheme charge transfer pathways in In2S3/Nb2O5 hybrid nanofiber photocatalysts for low-concentration CO2 hydrogenation. Sol RRL, 2022, 7: 2200963

    Article  Google Scholar 

  57. Shao X, Wang K, Peng L, et al. In-situ irradiated XPS investigation on 2D/1D Cd0.5Zn0.5S/Nb2O5 S-scheme heterojunction photocatalysts for simultaneous promotion of antibiotics removal and hydrogen evolution. Colloids Surfs A-Physicochem Eng Aspects, 2022, 652: 129846

    Article  CAS  Google Scholar 

  58. Xu F, Zhang J, Zhu B, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B-Environ, 2018, 230: 194–202

    Article  CAS  Google Scholar 

  59. Lin Y, Huang G, Chen L, et al. Enhanced CO2 photoreduction by Ni(OH)2−x/WO3 nanofibers with efficient CO2 activation and charge separation. Adv Sustain Syst, 2022, 7: 2200364

    Article  Google Scholar 

  60. Lin S, Wang Q, Huang H, et al. Piezocatalytic and photocatalytic hydrogen peroxide evolution of sulfide solid solution nano-branches from pure water and air. Small, 2022, 18: e2200914

    Article  PubMed  Google Scholar 

  61. Luo J, Wei X, Qiao Y, et al. Photoredox-promoted co-production of dihydroisoquinoline and H2O2 over defective Zn3In2S6. Adv Mater, 2023, 35: e2210110

    Article  PubMed  Google Scholar 

  62. Wang H, Yang C, Chen F, et al. A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew Chem Int Ed, 2022, 61: e202202328

    Article  ADS  CAS  Google Scholar 

  63. Cheng J, Wan S, Cao S. Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen. Angew Chem Int Ed, 2023, 62: e202310476

    Article  CAS  Google Scholar 

  64. Kou M, Wang Y, Xu Y, et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew Chem Int Ed, 2022, 61: e202200413

    Article  CAS  Google Scholar 

  65. Che H, Gao X, Chen J, et al. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew Chem Int Ed, 2021, 60: 25546–25550

    Article  CAS  Google Scholar 

  66. Lin F, Wang T, Ren Z, et al. Central nitrogen vacancies in polymeric carbon nitride for boosted photocatalytic H2O2 production. J Colloid Interface Sci, 2023, 636: 223–229

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Wu X, Chen G, Kang J, et al. Nanoflower-like graphitic carbon nitride aerogel: Artful cyanuric acid-controlled synthesis and enhanced photocatalytic hydrogen evolution activity. J Colloid Interface Sci, 2023, 654: 268–278

    Article  PubMed  Google Scholar 

  68. Zhao H, Jin Q, Khan MA, et al. Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem Catal, 2022, 2: 1720–1733

    Article  CAS  Google Scholar 

  69. Wang K, Li J, Liu X, et al. Sacrificial-agent-free artificial photosynthesis of hydrogen peroxide over step-scheme WO3/NiS hybrid nanofibers. Appl Catal B-Environ, 2024, 342: 123349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52104254 and 22378104), the Natural Science Foundation of Hubei Province (2022CFB504) and the Open Subject of Engineering Research Center for Clean Production of Textile Printing and Dyeing, Ministry of Education (2023GCZX008).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li K and Wang K designed and engineered the samples; Li K, Mei J, Liu Y, Hu D, and Yan S performed the experiments; Li K wrote the paper with support from Wang K and Wang G. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Guohong Wang  (王国宏) or Kai Wang  (王楷).

Ethics declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Ke Li is currently an MSc candidate in physical chemistry under the supervision of Associate Prof. Kai Wang and Prof. Guohong Wang at Hubei Normal University. Her research focuses on novel photocatalytic materials.

Guohong Wang received his PhD degree from Wuhan University of Technology. He then returned to Hubei Normal University and was promoted to be a full professor in 2013. His current research directions mainly focus on photocatalytic materials for energy conversion.

Kai Wang received his PhD degree in 2020 from Wuhan University of Technology. In 2021, he became an Associate Professor at Hubei Normal University. He was a postdoctoral fellow at Nanyang Technological University (NTU) from 2022 to 2024. His interests focus on nanomaterials for solar energy conversion and photocatalysis.

Electronic supplementary material

40843_2023_2717_MOESM1_ESM.pdf

Supplementary Information: Boosting photosynthesis of hydrogen peroxide directly from pure water and air over S-scheme fiber heterojunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Mei, J., Li, J. et al. Boosting the photosynthesis of hydrogen peroxide directly from pure water and air over S-scheme fiber heterojunction. Sci. China Mater. 67, 484–492 (2024). https://doi.org/10.1007/s40843-023-2717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2717-0

Keywords

Navigation