Skip to main content
Log in

Two-dimensional meta-magnetism in van der Waals layered material Cu2xFe1−xPS3

范德华层状材料Cu2xFe1−xPS3的二维介磁性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Complex magnetic ordering such as meta-magnetism and skyrmions is attractive for its potential applications in spintronics and fundamental understanding of magnetism. However, complex magnetic ordering is rarely observed in intrinsic van der Waals layered materials, limiting the exploration of two-dimensional (2D) magnetism. Here, we successfully synthesized a novel compound, Cu2xFe1−xPS3, which represents the first meta-magnetic van der Waals material with field-induced ferromagnetism. In this compound, monovalent Cu partially replaces the Fe positions in the FePS3 lattice in the form of dimers. The substitution of Cu breaks the 2D Ising antiferromagnetic structure, resulting in the complex coexistence of weak ferromagnetism and antiferromagnetism. Importantly, field-induced ferromagnetism is observed when the external magnetic field is perpendicular to the ab plane of the material. The nature of the meta-magnetic transition is attributed to the uncompensated antiferromagnetism with noncollinear magnetic structure under external magnetic field. Our work paves the way to realize 2D complex magnetic ordering.

摘要

复杂的磁有序, 如介磁性和斯格明子, 因其在自旋电子学中的潜在应用和对磁性的基本认知的意义而广受关注. 然而,在本征范德华层状材料中很少观察到复杂的磁有序, 这限制了二维磁性在该领域的探索. 本文报道了一种新的化合物Cu2xFe1−xPS3, 它是第一种具有场诱导铁磁性的介磁范德华层状材料. 在该化合物中, 单价Cu以二聚体的形式部分取代FePS3晶格中Fe的位置. Cu的取代破坏了FePS3的二维伊辛反铁磁结构, 导致弱铁磁性和反铁磁性共存. 更重要的是, 当外磁场垂直于材料的ab平面时, 我们可以观察到场诱导的铁磁性. 此材料的介磁相变本质归因于未补偿反铁磁结构在外磁场下转变为非共线磁结构. 我们的工作为实现二维介磁有序化提供了一条道路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    Article  CAS  ADS  Google Scholar 

  3. Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photon, 2014, 8: 899–907

    Article  CAS  ADS  Google Scholar 

  4. Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev, 2014, 43: 6537–6554

    Article  PubMed  Google Scholar 

  5. Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363: eaav4450

    Article  CAS  PubMed  Google Scholar 

  6. Cortie DL, Causer GL, Rule KC, et al. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv Funct Mater, 2020, 30: 1901414

    Article  CAS  Google Scholar 

  7. Mak KF, Shan J, Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys, 2019, 1: 646–661

    Article  Google Scholar 

  8. Hellman F, Hoffmann A, Tserkovnyak Y, et al. Interface-induced phenomena in magnetism. Rev Mod Phys, 2017, 89: 025006

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  9. Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics. Rev Mod Phys, 2018, 90: 015005

    Article  MathSciNet  CAS  ADS  Google Scholar 

  10. Choi JY, Kwon WJ, Shin YI. Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor bose-einstein condensate. Phys Rev Lett, 2012, 108: 035301

    Article  PubMed  ADS  Google Scholar 

  11. Brec R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion, 1986, 22: 3–30

    Article  CAS  Google Scholar 

  12. Samal R, Sanyal G, Chakraborty B, et al. Two-dimensional transition metal phosphorous trichalcogenides (MPX3): A review on emerging trends, current state and future perspectives. J Mater Chem A, 2021, 9: 2560–2591

    Article  CAS  Google Scholar 

  13. Susner MA, Chyasnavichyus M, McGuire MA, et al. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv Mater, 2017, 29: 1602852

    Article  Google Scholar 

  14. Jernberg P, Bjarman S, Wäppling R. FePS3: A first-order phase transition in a “2D” Ising antiferromagnet. J Magn Magn Mater, 1984, 46: 178–190

    Article  CAS  ADS  Google Scholar 

  15. Lançon D, Walker HC, Ressouche E, et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Phys Rev B, 2016, 94: 214407

    Article  ADS  Google Scholar 

  16. Lee JU, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16: 7433–7438

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Long G, Henck H, Gibertini M, et al. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett, 2020, 20: 2452–2459

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Kurosawa K, Saito S, Yamaguchi Y. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 1983, 52: 3919–3926

    Article  CAS  ADS  Google Scholar 

  19. Morosan E, Zandbergen HW, Dennis BS, et al. Superconductivity in Cu/TiSe2. Nat Phys, 2006, 2: 544–550

    Article  CAS  Google Scholar 

  20. Scagliotti M, Jouanne M, Balkanski M, et al. Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals. Phys Rev B, 1987, 35: 7097–7104

    Article  CAS  ADS  Google Scholar 

  21. Ichimura K, Sano M. Electrical conductivity of layered transition-metal phosphorus trisulfide crystals. Synth Met, 1991, 45: 203–211

    Article  CAS  Google Scholar 

  22. Biesinger MC, Lau LWM, Gerson AR, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci, 2010, 257: 887–898

    Article  CAS  ADS  Google Scholar 

  23. Xia B, He B, Zhang J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater, 2022, 12: 2201449

    Article  CAS  Google Scholar 

  24. Zhu W, Gan W, Muhammad Z, et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 2018, 54: 4481–4484

    Article  CAS  Google Scholar 

  25. Mathey Y, Michalowicz A, Toffoli P, et al. Resolution of a structural disorder through apparently inconsistent X-ray diffraction and EXAFS data: Structure of the new layered system manganese copper phosphorus sulfide (Mn1−xCu2x)PS3 (x = 0.13). Inorg Chem, 1984, 23: 897–902

    Article  CAS  Google Scholar 

  26. Michalowicz A, Verdaguer M, Mathey Y, et al. Order and disorder in low dimensional materials: Beyond the first coordination sphere with EXAFS. In: Bazin D, Benfatto M, Bianconi A, et al. Synchrotron Radiation in Chemistry and Biology I. Berlin, Heidelberg: Springer, 1988. 107–149

    Google Scholar 

  27. Zhang J, Xu W, Wang L, et al. Colossal vacancy effect of 2D CuInP2S6 quantum dots for enhanced broadband photodetection. Cryst Growth Des, 2023, 23: 1259–1268

    Article  CAS  Google Scholar 

  28. Takano K, Kodama RH, Berkowitz AE, et al. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys Rev Lett, 1997, 79: 1130–1133

    Article  CAS  ADS  Google Scholar 

  29. Ambrose T, Chien CL. Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers. Phys Rev Lett, 1996, 76: 1743–1746

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Henne B, Ney V, de Souza M, et al. Exchange-bias-like effect of an uncompensated antiferromagnet. Phys Rev B, 2016, 93: 144406

    Article  ADS  Google Scholar 

  31. Li L, Yuan Y, Zhang Y, et al. Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Appl Phys Lett, 2015, 107: 132401

    Article  ADS  Google Scholar 

  32. Jana S, Shaw BK, Bhowmik P, et al. Field-induced ferromagnetism and multiferroic behavior in end-on pseudohalide-bridged dinuclear Copper(II) complexes with tridentate schiff base blocking ligands. Inorg Chem, 2014, 53: 8723–8734

    Article  CAS  PubMed  Google Scholar 

  33. Čurlík I, Zapotoková M, Gastaldo F, et al. The magnetic field induced ferromagnetism in EuPd2Sn4 novel compound. Phys Status Solidi (B), 2021, 258: 2000633

    Article  ADS  Google Scholar 

  34. Chattopadhyay MK, Arora P, Roy SB. Magnetic properties of the field-induced ferromagnetic state in MnSi. J Phys-Condens Matter, 2009, 21: 296003

    Article  CAS  PubMed  Google Scholar 

  35. Tsujii N, Kitazawa H, Suzuki H, et al. Field-induced ferromagnetic transition in PrInNi4. J Phys Soc Jpn, 2002, 71: 1852–1856

    Article  CAS  ADS  Google Scholar 

  36. Xing R, Wang WQ, Lu Y, et al. Field-induced first-order ferromagnetic transition in (La0.8Eu0.2)4/3Sr5/3Mn2O7 single crystal. MGC, 2019, 18: 55–62

    Article  CAS  Google Scholar 

  37. Lee S, Park J, Choi Y, et al. Chemical tuning of magnetic anisotropy and correlations in Ni1−xFexPS3. Phys Rev B, 2021, 104: 174412

    Article  CAS  ADS  Google Scholar 

  38. Nauman M, Kiem DH, Lee S, et al. Complete mapping of magnetic anisotropy for prototype Ising van der Waals FePS3. 2D Mater, 2021, 8: 035011

    Article  CAS  Google Scholar 

  39. Wildes AR, Lançon D, Chan MK, et al. High field magnetization of FePS3. Phys Rev B, 2020, 101: 024415

    Article  CAS  ADS  Google Scholar 

  40. Lin SZ, Reichhardt C, Batista CD, et al. Driven skyrmions and dynamical transitions in chiral magnets. Phys Rev Lett, 2013, 110: 207202

    Article  PubMed  ADS  Google Scholar 

  41. Kolesnikov AG, Samardak AS, Stebliy ME, et al. Spontaneous nucleation and topological stabilization of skyrmions in magnetic nanodisks with the interfacial Dzyaloshinskii–Moriya interaction. J Magn Magn Mater, 2017, 429: 221–226

    Article  CAS  ADS  Google Scholar 

  42. Carey R, Beg M, Albert M, et al. Hysteresis of nanocylinders with Dzyaloshinskii–Moriya interaction. Appl Phys Lett, 2016, 109: 122401

    Article  ADS  Google Scholar 

  43. Liu Y, Cai N, Yu X, et al. Nucleation and stability of skyrmions in three-dimensional chiral nanostructures. Sci Rep, 2020, 10: 21717

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Yokouchi T, Kanazawa N, Tsukazaki A, et al. Formation of in-plane skyrmions in epitaxial MnSi thin films as revealed by planar Hall effect. J Phys Soc Jpn, 2015, 84: 104708

    Article  ADS  Google Scholar 

  45. Kwon HY, Bu KM, Wu YZ, et al. Effect of anisotropy and dipole interaction on long-range order magnetic structures generated by Dzyaloshinskii–Moriya interaction. J Magn Magn Mater, 2012, 324: 2171–2176

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program on Nano Science & Technology of the MOST (2022YFA1203600), the National Natural Science Foundation of China (U2032161, 21925110, 22321001, and 21890750), CAS Project for Young Scientists in Basic Research (YSBR-070), USTC Research Funds of the Double First-Class Initiative (YD2060002004), the Youth Innovation Promotion Association CAS (2018500), and the Key R&D Program of Shandong Province (2021CXGC010302).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Guo Y conceived the idea and designed the experiments. Zhou H, Liu Y and Wang Z carried out all experiments. Zhou H analyzed the data and wrote the original draft. Wu C and Xie Y reviewed and edited the manuscript. Wu C supervised the project.

Corresponding authors

Correspondence to Yuqiao Guo  (郭宇桥) or Changzheng Wu  (吴长征).

Ethics declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Haodong Zhou is a PhD candidate at Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China (USTC). His research interests mainly focus on the synthesis of 2D materials with unique magnetoelectric properties.

Yuqiao Guo received his PhD degree (2013) from USTC, and now works as an associate professor at the Key Laboratory of Precision and Intelligent Chemistry, USTC. His research interests mainly focus on magnetoelectric properties of low-dimensional materials and the correlated electronic materials.

Changzheng Wu obtained his BSc (2002) and PhD (2007) degrees from the Department of Chemistry, USTC. Thereafter, he has been working as a postdoctoral fellow at Hefei National Laboratory for Physical Sciences at Microscale. He is now a full professor of the Department of Chemistry, USTC. His current research focuses on the synthesis and characterization of inorganic 2D nanomaterials and regulation of their intrinsic physical properties for a wide range of applications in energy storage or energy conversion.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liu, Y., Wang, Z. et al. Two-dimensional meta-magnetism in van der Waals layered material Cu2xFe1−xPS3. Sci. China Mater. 67, 658–664 (2024). https://doi.org/10.1007/s40843-023-2716-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2716-y

Keywords

Navigation