Skip to main content
Log in

Orbital elasticity control of phase diagram for La0.67Sr0.33MnO3 films

La0.67Sr0.33MnO3薄膜相图的轨道弹性调控

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Transition metal oxides display rich functionalities, but intricate internal degrees of freedom pose a challenge to understanding phase diagrams as a road map for material exploration. Here, the order of orbital energy level (ELO) as a physical principle of phase diagrams is introduced and demonstrated to be effective by employing La0.67Sr0.33-MnO3 (LSMO) oxides. A phase diagram of LSMO associated with the oxygen content and strain is built combining DFT calculations and experiments, in which the structural stability is closely related to ELO. We thereby find a new phase with four-fold oxygen ordering as a result of ELO evolution. More important, orbital elasticity law, describing the degree of orbital splitting, is proposed to clarify the origin of ELO evolution, with the objective of design of functional oxides with specific functionality. This work broadens the means of performance modulation in the field of materials science and opens up an opportunity for phase diagram prediction from an orbital perspective.

摘要

过渡金属氧化物具有丰富的功能性, 但其错综复杂的内部自由度对相图绘制和结构设计提出了挑战. 本文中, 我们引入了描述相图物理起源的轨道能级序(ELO), 并通过对La0.67Sr0.33MnO3(LSMO)氧化物的研究证明了其在相图预测中的有效性. 结合DFT计算和实验, 我们构建了氧含量和应变关联的LSMO相图, 结果表明LSMO结构稳定性与ELO密切相关. 据此发现了一种由ELO演化而产生的四倍氧有序相. 最后, 我们提出了描述轨道分裂程度的轨道弹性定律, 阐明了ELO演化的起源, 助力功能氧化物的设计. 这项研究拓宽了材料科学领域的性能调控手段, 并为从轨道角度预测相图提供了思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li YS, Garst M, Schmalian J, et al. Elastocaloric determination of the phase diagram of Sr2RuO4. Nature, 2022, 607: 276–280

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hong SS, Gu M, Verma M, et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science, 2020, 368: 71–76

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kapil V, Schran C, Zen A, et al. The first-principles phase diagram of monolayer nanoconfined water. Nature, 2022, 609: 512–516

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Park DS, Hadad M, Riemer LM, et al. Induced giant piezoelectricity in centrosymmetric oxides. Science, 2022, 375: 653–657

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kang S, Jang WS, Morozovska AN, et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science, 2022, 376: 731–738

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhang Q, Gao A, Meng F, et al. Near-room temperature ferromagnetic insulating state in highly distorted LaCoO2.5 with CoO5 square pyramids. Nat Commun, 2021, 12: 1853

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Xiao D, Gu L. Origin of functionality for functional materials at atomic scale. Nano Sel, 2020, 1: 183–199

    Article  Google Scholar 

  8. Chang YA, Chen S, Zhang F, et al. Phase diagram calculation: Past, present and future. Prog Mater Sci, 2004, 49: 313–345

    Article  CAS  Google Scholar 

  9. Polshyn H, Zhu J, Kumar MA, et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588: 66–70

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li D, Lee K, Wang BY, et al. Superconductivity in an infinite-layer nickelate. Nature, 2019, 572: 624–627

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Disa AS, Kumah DP, Malashevich A, et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys Rev Lett, 2015, 114: 026801

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Aetukuri NB, Gray AX, Drouard M, et al. Control of the metal-in-sulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys, 2013, 9: 661–666

    Article  CAS  Google Scholar 

  13. Amini M, Silveira OJ, Vaňo V, et al. Control of molecular orbital ordering using a van der Waals monolayer ferroelectric. Adv Mater, 2023, 35: 2206456

    Article  CAS  Google Scholar 

  14. Morteza Najarian A, Bayat A, McCreery RL. Orbital control of photocurrents in large area all-carbon molecular junctions. J Am Chem Soc, 2018, 140: 1900–1909

    Article  CAS  PubMed  Google Scholar 

  15. Gaina R, Nicholson CW, Rumo M, et al. Long-ranged Cu-based order with dz2 orbital character at a YBa2Cu3O7/manganite interface. NPJ Quantum Mater, 2021, 6: 12

    Article  ADS  CAS  Google Scholar 

  16. Koohfar S, Georgescu AB, Hallsteinsen I, et al. Effect of strain on magnetic and orbital ordering of LaSrCrO3/LaSrMnO3 heterostructures. Phys Rev B, 2020, 101: 064420

    Article  ADS  CAS  Google Scholar 

  17. Bristowe NC, Varignon J, Fontaine D, et al. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat Commun, 2015, 6: 6677

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Tokunaga Y, Lottermoser T, Lee Y, et al. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nat Mater, 2006, 5: 937–941

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Singh K, Simon C, Cannuccia E, et al. Orbital-ordering-driven multi-ferroicity and magnetoelectric coupling in GeV4S8. Phys Rev Lett, 2014, 113: 137602

    Article  ADS  PubMed  Google Scholar 

  20. McMahon C, Achkar AJ, da Silva Neto EH, et al. Orbital symmetries of charge density wave order in YBa2Cu3O6+x. Sci Adv, 2020, 6: eaay0345

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Meng F, Zhang Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain, 2021, 4: 392–401

    Article  Google Scholar 

  22. Yao L, Inkinen S, van Dijken S. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat Commun, 2017, 8: 14544

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Zhong Z, Guan X, et al. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nat Commun, 2018, 9: 1923

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Yao L, Majumdar S, Äkäslompolo L, et al. Electron-beam-induced perovskite-brownmillerite-perovskite structural phase transitions in epitaxial La2/3Sr1/3MnO3 films. Adv Mater, 2014, 26: 2789–2793

    Article  CAS  PubMed  Google Scholar 

  25. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  ADS  CAS  Google Scholar 

  26. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  27. Siqi S, Jian G, Yue L, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2016, 25: 018212

    Article  ADS  Google Scholar 

  28. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  ADS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple]. Phys Rev Lett, 1997, 78: 1396

    Article  ADS  CAS  Google Scholar 

  30. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystlogr, 2011, 44: 1272–1276

    Article  CAS  Google Scholar 

  31. Khomskii DI, Streltsov SV. Orbital effects in solids: Basics, recent progress, and opportunities. Chem Rev, 2021, 121: 2992–3030

    Article  CAS  PubMed  Google Scholar 

  32. Okhotnikov K, Charpentier T, Cadars S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J Cheminform, 2016, 8: 17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ferguson JD, Kim Y, Kourkoutis LF, et al. Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv Mater, 2011, 23: 1226–1230

    Article  CAS  PubMed  Google Scholar 

  34. Cao L, Petracic O, Zakalek P, et al. Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial La0.7Sr0.3MnO3−δ thin films. Adv Mater, 2019, 31: 1806183

    Article  Google Scholar 

  35. Moreau M, Selbach SM, Tybell T. Spatially confined spin polarization and magnetic sublattice control in (La,Sr)MnO3−δ thin films by oxygen vacancy ordering Sci Rep, 2017, 7: 4386

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Saghayezhian M, Kouser S, Wang Z, et al. Atomic-scale determination of spontaneous magnetic reversal in oxide heterostructures Proc Natl Acad Sci USA, 2019, 116: 10309–10316

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim YM, He J, Biegalski MD, et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level Nat Mater, 2012, 11: 888–894

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Park JH, Coy JM, Kasirga TS, et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature, 2013, 500: 431–434

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Mukasa K, Matsuura K, Qiu M, et al. High-pressure phase diagrams of FeSe1xTex: Correlation between suppressed nematicity and enhanced superconductivity. Nat Commun, 2021, 12: 381

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hellwig O, Kirk TL, Kortright JB, et al. A new phase diagram for layered antiferromagnetic films. Nat Mater, 2003, 2: 112–116

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Z190010), the National Key Basic Research Program of China (2017YFA0303604 and 2019YFA0308500), the Key research projects of Frontier Science of Chinese Academy of Sciences (QYZDB-SSW-JSC035), the Youth Innovation Promotion Association of CAS (2018008), the National Natural Science Foundation of China (51672307, 51991344, 52025025, 52072400, 12074416, 12074434, and 52250402), China National Postdoctoral Program for Innovative Talents (BX20220166), and China Postdoctoral Science Foundation (2023M731863). The authors would like to thank 4B9B beamline of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Gu L, Chen L, Yu Q, and Zhang Q initiated and supervised this work. Gao A, Ji Y and Wang B designed and performed the density functional theory calculations and analyzed the data with Gu L, Chen L, Yu Q, and Zhang Q. Huang H, Du J and Liu Z grew and processed the samples under the guidance of Ge C and Jin K; Li X fabricated TEM lamellas with FIB milling; Zhang Q and Meng F performed TEM experiments and the results were analyzed by Zhang Q, Gao A, Shang T, Su D, Yu Q, Zhang Z, and Nan C; Ni H performed the magnetic and XAS experiments. Gao A and Zhang Q wrote the manuscript with valuable inputs from Yu Q, Chen L and Gu L. All authors participated in revising the manuscript.

Corresponding authors

Correspondence to Qinghua Zhang  (张庆华), Qian Yu  (余倩), Longqing Chen  (陈龙庆) or Lin Gu  (谷林).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Ang Gao received his PhD degree from the Institute of Physics, Chinese Academy of Sciences, in 2022. He then worked as a postdoctoral researcher at the School of Materials Science and Engineering, Tsinghua University, under the supervision of Prof. Lin Gu. He has focused on atomic structure evolution to reveal the structure-function relationship of functional oxide materials, combining theoretical calculations and electron microscopy techniques.

Lin Gu is a professor at the School of Materials Science and Engineering, Tsinghua University, and has been engaged in the field of electron microscopy. In 2002, he graduated from Tsinghua University mentored by Academician Zhu Jing. In 2005, he received his PhD degree from Arizona State University supervised by Prof. David J. Smith. He focused on the atom and electron structure of functional oxide materials, energy storage materials and catalytic materials from lattice and charge degrees of freedom.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Zhang, Q., Liu, Z. et al. Orbital elasticity control of phase diagram for La0.67Sr0.33MnO3 films. Sci. China Mater. 67, 619–628 (2024). https://doi.org/10.1007/s40843-023-2711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2711-x

Keywords

Navigation