Skip to main content
Log in

Artificial morality basic device: transistor for mimicking morality logics

人工道德基础器件:模拟道德逻辑的晶体管

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The extensive application of increasingly sophisticated artificial intelligence in life has promoted the artificial morality (AM) issue. The establishment and implementation of artificial ethics for robots are usually solved by passive program instructions, while active realization at the hardware level remains challenging. Here, inspired by cognitive psychology and neurophysiology, a typical AM device is demonstrated. The first of the three laws of robotics is realized in this device by judging good and evil and solving moral dilemmas. The device exhibits the three states of ego, id, and superego and the six humanities of the categorical imperative, instinctive disregard, instinctive impulse, moral deontology, utilitarianism, and egoism. The origin of morality is revealed in terms of electronics, which is an adversarial collaboration between the subconscious and the conscious. This work provides a practicable path for the consciousness generation and moral formation of artificial intelligence in the future.

摘要

日益先进的人工智能在生活中的广泛应用, 促进了人工道德问题的产生. 机器人的人工伦理的建立和实施通常是通过被动程序指令解决的, 而在硬件层面的主动实现仍然具有挑战性. 在这里, 受认知心理学和神经生理学的启发, 我们展示了一种典型的人工道德器件. 通过判断善恶和解决道德困境, 器件实现了机器人三定律中的第一定律. 器件展示了自我、本我和超我三种状态, 以及绝对命令、本能漠视、本能冲动、道德义务论、功利主义和利己主义等六种人性. 道德的起源在电子学方面得到了揭示, 这是潜意识和意识之间的对抗性协作. 这项工作为未来人工智能的意识产生和道德形成提供了一条可行的道路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ye M, Shen J, Lin G, et al. Deep learning for person re-identification: A survey and outlook. IEEE Trans Pattern Anal Mach Intell, 2022, 44: 2872–2893

    Article  PubMed  Google Scholar 

  2. Wang G, Ye JC, De Man B. Deep learning for tomographic image reconstruction. Nat Mach Intell, 2020, 2: 737–748

    Article  Google Scholar 

  3. Reddy S, Allan S, Coghlan S, et al. A governance model for the application of AI in health care. J Am Med Inf Assoc, 2020, 27: 491–497

    Article  Google Scholar 

  4. Verdoliva L. Media Forensics and DeepFakes: An overview. IEEE J Sel Top Signal Process, 2020, 14: 910–932

    Article  ADS  Google Scholar 

  5. Tannenbaum C, Ellis RP, Eyssel F, et al. Sex and gender analysis improves science and engineering. Nature, 2019, 575: 137–146

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nat Mach Intell, 2019, 1: 389–399

    Article  Google Scholar 

  7. Misselhorn C. Artificial systems with moral capacities? A research design and its implementation in a geriatric care system. Artif Intell, 2020, 278: 103179

    Article  Google Scholar 

  8. Bartolozzi C, Indiveri G, Donati E. Embodied neuromorphic intelligence. Nat Commun, 2022, 13: 1024

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang T, Wang Y, Zheng Y, et al. Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat Commun, 2023, 14: 2281

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng Y, Wang Y, Li Z, et al. MXene quantum dots/perovskite heterostructure enabling highly specific ultraviolet detection for skin prevention. Matter, 2023, 6: 506–520

    Article  CAS  Google Scholar 

  11. Ding Q, Zhou Z, Wang H, et al. Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMat, 2022, 4: e1141

    Article  Google Scholar 

  12. Duan G, Huang S, Feng Z, et al. Three-terminal artificial olfactory sensors based on emerging materials: Mechanism and application. Adv Funct Mater, 2023, 33: 202209969

    Article  CAS  Google Scholar 

  13. Zhang J, Guo P, Guo Z, et al. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv Funct Mater, 2023, 33: 2370197

    Article  Google Scholar 

  14. Shim H, Jang S, Jang JG, et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res, 2021, 15: 758–764

    Article  ADS  Google Scholar 

  15. Xie D, Yin K, Yang ZJ, et al. Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision. Mater Horiz, 2022, 9: 1448–1459

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Chen X, Zhao C, et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat Electron, 2023, 6: 281–291

    Article  CAS  Google Scholar 

  17. Tan H, van Dijken S. Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat Commun, 2023, 14: 2169

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li E, Gao C, Yu R, et al. MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat Commun, 2022, 13: 2898

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh J, Kim S, Lee C, et al. Preventing vanishing gradient problem of hardware neuromorphic system by implementing imidazole-based memristive ReLU activation neuron. Adv Mater, 2023, 35: e2300023

    Article  PubMed  Google Scholar 

  20. Wang D, Tang R, Lin H, et al. Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing. Nat Commun, 2023, 14: 1068

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Wu S, Yu R, et al. Programmable neuronal-synaptic transistors based on 2D MXene for a high-efficiency neuromorphic hardware network. Matter, 2022, 5: 3023–3040

    Article  CAS  Google Scholar 

  22. Chen S, Li E, Yu R, et al. An organic synaptic transistor with integration of memory and neuromorphic computing. J Mater Chem C, 2021, 9: 9972–9981

    Article  ADS  CAS  Google Scholar 

  23. Ni Y, Yang L, Feng J, et al. Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing. SmartMat, 2022, 4: e1154

    Article  Google Scholar 

  24. Shan L, Chen Q, Yu R, et al. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multimodal information recognition. Nat Commun, 2023, 14: 2648

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shim H, Ershad F, Patel S, et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat Electron, 2022, 5: 660–671

    Article  CAS  Google Scholar 

  26. Zhang Y, Liu L, Tu B, et al. An artificial synapse based on molecular junctions. Nat Commun, 2023, 14: 247

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roe DG, Ho DH, Choi YY, et al. Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing. Nat Commun, 2023, 14: 5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang C, Liu J, Ni Y, et al. Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat Commun, 2023, 14: 1344

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Liu D, Gao C, et al. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat Commun, 2022, 13: 7917

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Zhong J, Li E, et al. Self-powered artificial synapses actuated by triboelectric nanogenerator. Nano Energy, 2019, 60: 377–384

    Article  CAS  Google Scholar 

  31. Deng Y, Zhao M, Ma Y, et al. A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv Funct Mater, 2023, 33: e2214139

    Article  Google Scholar 

  32. Zhao P, Song Y, Xie P, et al. All-organic smart textile sensor for deep-learning-assisted multimodal sensing. Adv Funct Mater, 2023, 33: e2301816

    Article  Google Scholar 

  33. Zhang Y, Shen W, Wu S, et al. High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication. ACS Nano, 2022, 16: 19187–19198

    Article  CAS  PubMed  Google Scholar 

  34. Zha J, Shi S, Chaturvedi A, et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv Mater, 2023, 35: e2211598

    Article  PubMed  Google Scholar 

  35. Kim Y, Zhu C, Lee WY, et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv Mater, 2023, 35: e2203541

    Article  PubMed  Google Scholar 

  36. Lao J, Jiang C, Luo C, et al. Self-powered and humidity-modulable optoelectronic synapse. Adv Mater Technol, 2023, 8: 2201779

    Article  CAS  Google Scholar 

  37. Guo Y, Yin F, Li Y, et al. Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv Mater, 2023, 35: 2300855

    Article  CAS  Google Scholar 

  38. Shan L, Zeng H, Liu Y, et al. Artificial tactile sensing system with photoelectric output for high accuracy haptic texture recognition and parallel information processing. Nano Lett, 2022, 22: 7275–7283

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ren Y, Bu X, Wang M, et al. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat Commun, 2022, 13: 5585

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Sun T, Zeng S, et al. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy, 2022, 95: 106987

    Article  CAS  Google Scholar 

  41. Yun SY, Han JK, Lee SW, et al. Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware. Nano Energy, 2023, 109: 108322

    Article  CAS  Google Scholar 

  42. Wang Y, Wang K, Hu X, et al. Optogenetics-inspired fluorescent synaptic devices with nonvolatility. ACS Nano, 2023, 17: 3696–3704

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Wang P, Mondal S, et al. Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv Mater, 2023, 35: e2210628

    Article  PubMed  Google Scholar 

  44. Ning H, Yu Z, Zhang Q, et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat Nanotechnol, 2023, 18: 493–500

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhu X, Gao C, Ren Y, et al. High-contrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection. Adv Mater, 2023, 35: e2301468

    Article  PubMed  Google Scholar 

  46. Yu R, He L, Gao C, et al. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat Commun, 2022, 13: 7019

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Wall NR, De La Parra M, Callaway EM, et al. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron, 2013, 79: 347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat Neurosci, 2014, 17: 1022–1030

    Article  CAS  PubMed  Google Scholar 

  49. Guerra A, Colella D, Giangrosso M, et al. Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease. Brain, 2021, 145: 224–236

    Article  Google Scholar 

  50. Carhart-Harris RL, Friston KJ. The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain, 2010, 133: 1265–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Zheng Y, Gao J, et al. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse. InfoMat, 2021, 3: 917–928

    Article  CAS  Google Scholar 

  52. Han S, Hu L, Wang X, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv Sci, 2017, 4: 1600435

    Article  Google Scholar 

  53. Xiang D, Liu T, Zhang X, et al. Dielectric engineered two-dimensional neuromorphic transistors. Nano Lett, 2021, 21: 3557–3565

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Liu X, Wang S, Di Z, et al. An optoelectronic synapse based on two-dimensional violet phosphorus heterostructure. Adv Sci, 2023, 10: 2301851

    Article  CAS  Google Scholar 

  55. Turing AM. Computing machinery and intelligence. Mind, 1950, LIX: 433–460

    Article  MathSciNet  Google Scholar 

  56. Lake BM, Salakhutdinov R, Tenenbaum JB. Human-level concept learning through probabilistic program induction. Science, 2015, 350: 1332–1338

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U21A20497 and 62374033) and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ129).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen H and Chen S conceived the project; Chen S, Yu R and Zou Y designed and performed the experiments and collected the data; Chen S, Yu R, Yu X, and Liu C analyzed and discussed the data; Chen H supervised the project; Chen S and Chen H wrote the paper. All authors contributed to the general discussion.

Corresponding author

Correspondence to Huipeng Chen  (陈惠鹏).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Shaomin Chen is currently working as an instructor at Zhicheng College, Fuzhou University. He is a PhD candidate under the supervision of Prof. Chen at the College of Physics and Information Engineering, Fuzhou University. His current research interests mainly focus on neuromorphic devices (synaptic and neuron devices).

Huipeng Chen obtained his PhD degree in physics from Tufts University in 2009. Before joining the College of Physics and Information Engineering, Fuzhou University in 2015, he worked as a postdoctoral fellow at Texas Tech University during 2009–2011 and at the University of Tennessee and Oak Ridge National Laboratory from 2011 to 2014. His research interests are in semiconductor materials and devices, including thin film transistors, memories, sensors, neuromorphic electronic devices, and systems.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yu, R., Zou, Y. et al. Artificial morality basic device: transistor for mimicking morality logics. Sci. China Mater. 67, 608–618 (2024). https://doi.org/10.1007/s40843-023-2710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2710-0

Keywords

Navigation