Skip to main content
Log in

MOF-derived Co3O4/ZrO2 mesoporous octahedrons with optimized charge transfer and intermediate conversion for efficient CO2 photoreduction

MOF衍生Co3O4/ZrO2介孔八面体: 优化电荷转移和中间体转化用于高效CO2光还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Regulating charge transfer and reaction pathways are effective strategies for boosting photocatalytic CO2 reduction. Herein, Co3O4/ZrO2 mesoporous octahedrons are synthesized through facile pyrolysis of UIO-66@ZIF-67 core/shell octahedrons. The as-obtained Co3O4/ZrO2 mesoporous octahedrons are assembled by highly dispersive and small-sized nanoparticles, with 13 nm average particle size and 5.8 nm pore width, leading to a high specific surface area of 43.11 m2 g−1. Benefiting from active-site engineering, the charge-transfer kinetics and CO2 adsorption are successfully enhanced. In addition, density functional theory calculations reveal that ZrO2 tailors the reaction pathway of CO2 reduction by promoting CO2 activation to *CO2 and intermediate formation (*COOH and *CO), as well as decreasing the energy barrier of the rate-limiting step (*CO→CO). Thus, the Co3O4/ZrO2 mesoporous octahedrons afford a turnover frequency of 28.82 h−1, 16.95-fold larger than pure Co3O4.

摘要

调控电荷转移和反应路径是促进光催化CO2还原的两种有效策略. 本研究通过热解UIO-66@ZIF-67核壳八面体, 合成了Co3O4/ZrO2介孔八面体. 该介孔八面体由高度分散的小尺寸纳米颗粒组装而成, 平均颗粒尺寸为13 nm, 平均孔径为5.8 nm, 比表面积为43.11 m2 g−1. 受益于活性位点设计, 电荷转移动力学和CO2 吸附得以增强. 此外, 密度泛函理论计算结果显示, ZrO2能够有效调控CO2还原的反应路径, 包括促进CO2活化为*CO2、中间体(*COOH和*CO)的形成、以及减小限速步(*CO→CO)的能垒. 因此, Co3O4/ZrO2介孔八面体的周转率高达28.82,是纯Co3O4的16.95倍.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen Z, Cui HH, Hao S, et al. GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-type PbS. Energy Environ Sci, 2023, 16: 1676–1684

    Article  CAS  Google Scholar 

  2. Luo ZZ, Cai S, Hao S, et al. Valence disproportionation of GeS in the PbS matrix forms Pb5Ge5S12 inclusions with conduction band alignment leading to high n-type thermoelectric performance. J Am Chem Soc, 2022, 144: 7402–7413

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Y, Wang Z, Huang L, et al. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv Energy Mater, 2021, 11: 2003159

    Article  ADS  CAS  Google Scholar 

  4. Chen K, Wang X, Li Q, et al. Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chem Eng J, 2021, 418: 129476

    Article  ADS  CAS  Google Scholar 

  5. Sun Y, Li L, Li X, et al. Regulating activity and selectivity of photocatalytic CO2 reduction on cobalt by rare earth compounds. ACS Appl Mater Interfaces, 2023, 15: 16621–16630

    Article  CAS  PubMed  Google Scholar 

  6. Wan S, Xu J, Cao S, et al. Promoting intramolecular charge transfer of graphitic carbon nitride by donor-acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip Mater, 2022, 1: 294–308

    Article  Google Scholar 

  7. Jiao X, Zheng K, Hu Z, et al. Broad-spectral-response photocatalysts for CO2 reduction. ACS Cent Sci, 2020, 6: 653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang C, Wan S, Zhu B, et al. Calcination-regulated microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water. Angew Chem Int Ed, 2022, 61: e202208438

    Article  ADS  CAS  Google Scholar 

  9. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  10. Wang H, Liu W, Jin S, et al. Low-dimensional semiconductors in artificial photosynthesis: An outlook for the interactions between particles/quasiparticles. ACS Cent Sci, 2020, 6: 1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao H, Yan Y, Wang Y, et al. Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles. Carbon, 2023, 201: 415–424

    Article  CAS  Google Scholar 

  12. Zhuang G, Chen Y, Zhuang Z, et al. Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design. Sci China Mater, 2020, 63: 2089–2118

    Article  CAS  Google Scholar 

  13. Yi L, Zhao W, Huang Y, et al. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Sci China Mater, 2020, 63: 2206–2214

    Article  CAS  Google Scholar 

  14. Karthikeyan C, Arunachalam P, Ramachandran K, et al. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J Alloys Compd, 2020, 828: 154281

    Article  CAS  Google Scholar 

  15. Di J, Xiong J, Li H, et al. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv Mater, 2018, 30: 1704548

    Article  Google Scholar 

  16. Jiao X, Zheng K, Liang L, et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem Soc Rev, 2020, 49: 6592–6604

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Waterhouse GIN, Chen G, et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem Soc Rev, 2019, 48: 1972–2010

    Article  CAS  PubMed  Google Scholar 

  18. Teng Z, Li W, Tang Y, et al. Mesoporous organosilica hollow nanoparticles: Synthesis and applications. Adv Mater, 2019, 31: 1707612

    Article  Google Scholar 

  19. Ma Y, Wang Z, Xu X, et al. Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chin J Catal, 2017, 38: 1956–1969

    Article  CAS  Google Scholar 

  20. Chen W, Han B, Tian C, et al. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl Catal B-Environ, 2019, 244: 996–1003

    Article  CAS  Google Scholar 

  21. Li X, Sun Y, Xu J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy, 2019, 4: 690–699

    Article  ADS  CAS  Google Scholar 

  22. Wu X, Li Y, Zhang G, et al. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: Insight into full spectrum-induced reaction mechanism. J Am Chem Soc, 2019, 141: 5267–5274

    Article  CAS  PubMed  Google Scholar 

  23. Gao C, Meng Q, Zhao K, et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater, 2016, 28: 6485–6490

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Yang P, Zhang H, et al. Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl Catal B-Environ, 2022, 300: 120729

    Article  CAS  Google Scholar 

  25. Wang K, Cheng M, Wang N, et al. Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction. Chin J Catal, 2023, 44: 146–159

    Article  CAS  Google Scholar 

  26. Cai ZX, Wang ZL, Kim J, et al. Hollow functional materials derived from metal–organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater, 2019, 31: 1804903

    Article  Google Scholar 

  27. Han, X. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal–organic frameworks. Nano-Micro Lett, 2019, 11: 1

    Article  ADS  CAS  Google Scholar 

  28. Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale, 2014, 6: 1236–1257

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhang W, Zhao S, Qin H, et al. Metal–organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution. Sci China Mater, 2023, 66: 1042–1052

    Article  CAS  Google Scholar 

  30. Li H, Dong W, Li C, et al. Boosting reaction kinetics and shuttle effect suppression by single crystal MOF-derived N-doped ordered hierarchically porous carbon for high performance Li-Se battery. Sci China Mater, 2022, 65: 2975–2988

    Article  CAS  Google Scholar 

  31. Wang J, Yuan L, Zhang C, et al. Metal-organic frameworks derived titanium oxides via soft interface adaptive transformation. Adv Funct Mater, 2021, 31: 2107260

    Article  CAS  Google Scholar 

  32. Wang T, Shi L, Tang J, et al. A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction. Nanoscale, 2016, 8: 6712–6720

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Li Y, Li K, Luo Y, et al. Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ZIF-67 and their gas-sensing performances for trimethylamine. Sens Actuat B-Chem, 2020, 308: 127657

    Article  CAS  Google Scholar 

  34. Yan W, Xu H, Ling M, et al. MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens, 2021, 6: 2613–2621

    Article  CAS  PubMed  Google Scholar 

  35. Li GC, Liu PF, Liu R, et al. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans, 2016, 45: 13311–13316

    Article  CAS  PubMed  Google Scholar 

  36. Chen FF, Zhou L, Peng C, et al. Bimetal–organic layer-derived ultrathin lateral heterojunction with continuous semi-coherent interfaces for boosting photocatalytic CO2 reduction. Appl Catal B-Environ, 2023, 331: 122689

    Article  CAS  Google Scholar 

  37. Zheng K, Wu Y, Zhu J, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets. J Am Chem Soc, 2022, 144: 12357–12366

    Article  CAS  PubMed  Google Scholar 

  38. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Zhang W, Lu G, Cui C, et al. A family of metal–organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv Mater, 2014, 26: 4056–4060

    Article  CAS  PubMed  Google Scholar 

  41. Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl Catal B-Environ, 2017, 209: 476–482

    Article  CAS  Google Scholar 

  42. Bai Y, Dong J, Hou Y, et al. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NOx with NH3 at low temperature. Chem Eng J, 2019, 361: 703–712

    Article  CAS  Google Scholar 

  43. Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130: 13850–13851

    Article  PubMed  Google Scholar 

  44. Tahir M, Pan L, Zhang R, et al. High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett, 2017, 2: 2177–2182

    Article  CAS  Google Scholar 

  45. Shen Z, Zhuang Y, Li W, et al. Increased activity in the oxygen evolution reaction by Fe4+-induced hole states in perovskite La1−xSrxFeO3. J Mater Chem A, 2020, 8: 4407–4415

    Article  CAS  Google Scholar 

  46. Wang H, Zhai T, Wu Y, et al. High-valence oxides for high performance oxygen evolution electrocatalysis. Adv Sci, 2023, 10: 2301706

    Article  CAS  Google Scholar 

  47. Zhang H, Wang Y, Zuo S, et al. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J Am Chem Soc, 2021, 143: 2173–2177

    Article  CAS  PubMed  Google Scholar 

  48. Chen W, Liu X, Han B, et al. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res, 2021, 14: 730–737

    Article  ADS  CAS  Google Scholar 

  49. Wang S, Guan BY, Lou XWD. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ Sci, 2018, 11: 306–310

    Article  CAS  Google Scholar 

  50. Zhao K, Zhao S, Gao C, et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small, 2018, 14: 1800762

    Article  Google Scholar 

  51. Meng X, Li R, Yang J, et al. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion. Chin J Catal, 2022, 43: 2414–2424

    Article  CAS  Google Scholar 

  52. Han B, Ou X, Deng Z, et al. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew Chem Int Ed, 2018, 57: 16811–16815

    Article  CAS  Google Scholar 

  53. Li L, Dai X, Chen DL, et al. Steering catalytic activity and selectivity of CO2 photoreduction to syngas with hydroxy-rich Cu2S@ROH-NiCo2O3 double-shelled nanoboxes. Angew Chem Int Ed, 2022, 61: e202205839

    Article  CAS  Google Scholar 

  54. Liu H, Chen K, Feng YN, et al. In situ confined growth of Co3O4-TiO2/C S-scheme nanoparticle heterojunction for boosted photocatalytic CO2 reduction. J Phys Chem C, 2023, 127: 5289–5298

    Article  CAS  Google Scholar 

  55. Chen FF, Chen J, Feng YN, et al. Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Sci China Mater, 2022, 65: 413–421

    Article  CAS  Google Scholar 

  56. Zhong H, Sa R, Lv H, et al. Covalent organic framework hosting metalloporphyrin-based carbon dots for visible-light-driven selective CO2 reduction. Adv Funct Mater, 2020, 30: 2002654

    Article  CAS  Google Scholar 

  57. Zhang Q, Xia Y, Cao S. “Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chin J Catal, 2021, 42: 1667–1676

    Article  CAS  Google Scholar 

  58. Cheng J, Wan S, Cao S. Promoting solar-driven hydrogen peroxide production over thiazole-based conjugated polymers via generating and converting singlet oxygen. Angew Chem Int Ed, 2023, 62: e202310476

    Article  CAS  Google Scholar 

  59. Deng H, Fei X, Yang Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J, 2021, 409: 127377

    Article  CAS  Google Scholar 

  60. Guo F, Shi W, Wang H, et al. Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol, 2017, 7: 3325–3331

    Article  CAS  Google Scholar 

  61. Li Y, Jin R, Xing Y, et al. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv Energy Mater, 2016, 6: 1601273

    Article  Google Scholar 

  62. Li W, Zhang G, Jiang X, et al. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal–support interaction on tuning product distribution. ACS Catal, 2019, 9: 2739–2751

    Article  CAS  Google Scholar 

  63. Yu X, Zhang J, Wang X, et al. Fischer–Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Appl Catal B-Environ, 2018, 232: 420–428

    Article  CAS  Google Scholar 

  64. Shi Y, Zhan G, Li H, et al. Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Adv Mater, 2021, 33: 2100143

    Article  CAS  Google Scholar 

  65. Xu F, Zhang J, Zhu B, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B-Environ, 2018, 230: 194–202

    Article  CAS  Google Scholar 

  66. Chen FF, Chen J, Li L, et al. g-C3N4 microtubes@CoNiO2 nanosheets p–n heterojunction with a hierarchical hollow structure for efficient photocatalytic CO2 reduction. Appl Surf Sci, 2022, 579: 151997

    Article  CAS  Google Scholar 

  67. Wang XK, Liu J, Zhang L, et al. Monometallic catalytic models hosted in stable metal–organic frameworks for tunable CO2 photoreduction. ACS Catal, 2019, 9: 1726–1732

    Article  CAS  Google Scholar 

  68. Shi Y, Li J, Mao C, et al. Van der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat Commun, 2021, 12: 5923

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang NY, He H, Liu SJ, et al. Electrostatic attraction-driven assembly of a metal–organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J Am Chem Soc, 2021, 143: 17424–17430

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, Li B, Zhang D, et al. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano, 2020, 14: 10552–10561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0710303), the National Natural Science Foundation of China (52002072, U1905215, and 52072076), and the Natural Science Foundation of Fujian Province (2021J01589 and 2023J05082).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Liu H performed the experiments and wrote the draft; Gan W contributed to sample synthesis; Zhuang G contributed to the data analysis; Qiu Y and Yang C contributed to the theoretical analysis; Chen FF and Yu Y conceived the ideal and revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Fei-Fei Chen  (陈飞飞), Chengkai Yang  (杨程凯) or Yan Yu  (于岩).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Haibing Liu received his Bachelor’s degree from Nanchang Hangkong University in 2020 and his Master’s degree from Fuzhou University in 2023. His research interest is the synthesis of advanced catalysts using MOF precursors for CO2 photoreduction.

Yanbin Qiu received his Bachelor’s degree from Fujian Normal University in 2021. Currently, he is a graduate student at Fuzhou University. His research focuses on building structure–performance relationships based on DFT calculations.

Fei-Fei Chen received his Bachelor’s degree from Xiamen University in 2014, and Doctor’s degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2019. Currently, he is an associate professor at Fuzhou University. His research interest is the development of ecological materials for water and air purification.

Chengkai Yang received his Bachelor’s degree from Tianjin University, and Doctor’s degree from Peking University in 2019. Currently, he is an associate professor at Fuzhou University. His research interests include energy materials, the electrochemistry of zinc-ion/lithium-ion/lithium–sulfur batteries, and material calculations.

Yan Yu received her Bachelor’s, Master’s, and Doctor’s degrees from Fuzhou University. She was a postdoctoral fellow at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, in 2010–2013. Currently, she is a professor at Fuzhou University. Her research interests include water purification, utilization of solid waste, ecological materials, and photocatalytic CO2 reduction and H2 production.

Supplementary Information

40843_2023_2707_MOESM1_ESM.pdf

MOF-derived Co3O4/ZrO2 mesoporous octahedrons with optimized charge transfer and intermediate conversion for efficient CO2 photoreduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Qiu, Y., Gan, W. et al. MOF-derived Co3O4/ZrO2 mesoporous octahedrons with optimized charge transfer and intermediate conversion for efficient CO2 photoreduction. Sci. China Mater. 67, 588–597 (2024). https://doi.org/10.1007/s40843-023-2707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2707-3

Keywords

Navigation